ﻻ يوجد ملخص باللغة العربية
In this paper we review the Myrzakulov Gravity models (MG-N, with $mathrm{N = I, II, ldots, VIII}$) and derive their respective metric-affine generalizations (MAMG-N), discussing also their particular sub-cases. The field equations of the theories are obtained by regarding the metric tensor and the general affine connection as independent variables. We then focus on the case in which the function characterizing the aforementioned metric-affine models is linear and consider a Friedmann-Lema^{i}tre-Robertson-Walker background to study cosmological aspects and applications.
We derive the full set of field equations for the Metric-Affine version of the Myrzakulov gravity model and also extend this family of theories to a broader one. More specifically, we consider theories whose gravitational Lagrangian is given by $F(R,
The intriguing choice to treat alternative theories of gravity by means of the Palatini approach, namely elevating the affine connection to the role of independent variable, contains the seed of some interesting (usually under-explored) generalizatio
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry.
This article presents a systematic way to solve for the Affine Connection in Metric-Affine Geometry. We start by adding to the Einstein-Hilbert action, a general action that is linear in the connection and its partial derivatives and respects project
We present a framework in which the projective symmetry of the Einstein-Hilbert action in metric-affine gravity is used to induce an effective coupling between the Dirac lagrangian and the Maxwell field. The effective $U(1)$ gauge potential arises as