ترغب بنشر مسار تعليمي؟ اضغط هنا

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

60   0   0.0 ( 0 )
 نشر من قبل Rinon Gal
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Can a generative model be trained to produce images from a specific domain, guided by a text prompt only, without seeing any image? In other words: can an image generator be trained blindly? Leveraging the semantic power of large scale Contrastive-Language-Image-Pre-training (CLIP) models, we present a text-driven method that allows shifting a generative model to new domains, without having to collect even a single image from those domains. We show that through natural language prompts and a few minutes of training, our method can adapt a generator across a multitude of domains characterized by diverse styles and shapes. Notably, many of these modifications would be difficult or outright impossible to reach with existing methods. We conduct an extensive set of experiments and comparisons across a wide range of domains. These demonstrate the effectiveness of our approach and show that our shifted models maintain the latent-space properties that make generative models appealing for downstream tasks.

قيم البحث

اقرأ أيضاً

Inspired by the ability of StyleGAN to generate highly realistic images in a variety of domains, much recent work has focused on understanding how to use the latent spaces of StyleGAN to manipulate generated and real images. However, discovering sema ntically meaningful latent manipulations typically involves painstaking human examination of the many degrees of freedom, or an annotated collection of images for each desired manipulation. In this work, we explore leveraging the power of recently introduced Contrastive Language-Image Pre-training (CLIP) models in order to develop a text-based interface for StyleGAN image manipulation that does not require such manual effort. We first introduce an optimization scheme that utilizes a CLIP-based loss to modify an input latent vector in response to a user-provided text prompt. Next, we describe a latent mapper that infers a text-guided latent manipulation step for a given input image, allowing faster and more stable text-based manipulation. Finally, we present a method for mapping a text prompts to input-agnostic directions in StyleGANs style space, enabling interactive text-driven image manipulation. Extensive results and comparisons demonstrate the effectiveness of our approaches.
Image dehazing using learning-based methods has achieved state-of-the-art performance in recent years. However, most existing methods train a dehazing model on synthetic hazy images, which are less able to generalize well to real hazy images due to d omain shift. To address this issue, we propose a domain adaptation paradigm, which consists of an image translation module and two image dehazing modules. Specifically, we first apply a bidirectional translation network to bridge the gap between the synthetic and real domains by translating images from one domain to another. And then, we use images before and after translation to train the proposed two image dehazing networks with a consistency constraint. In this phase, we incorporate the real hazy image into the dehazing training via exploiting the properties of the clear image (e.g., dark channel prior and image gradient smoothing) to further improve the domain adaptivity. By training image translation and dehazing network in an end-to-end manner, we can obtain better effects of both image translation and dehazing. Experimental results on both synthetic and real-world images demonstrate that our model performs favorably against the state-of-the-art dehazing algorithms.
We propose a general framework for unsupervised domain adaptation, which allows deep neural networks trained on a source domain to be tested on a different target domain without requiring any training annotations in the target domain. This is achieve d by adding extra networks and losses that help regularize the features extracted by the backbone encoder network. To this end we propose the novel use of the recently proposed unpaired image-toimage translation framework to constrain the features extracted by the encoder network. Specifically, we require that the features extracted are able to reconstruct the images in both domains. In addition we require that the distribution of features extracted from images in the two domains are indistinguishable. Many recent works can be seen as specific cases of our general framework. We apply our method for domain adaptation between MNIST, USPS, and SVHN datasets, and Amazon, Webcam and DSLR Office datasets in classification tasks, and also between GTA5 and Cityscapes datasets for a segmentation task. We demonstrate state of the art performance on each of these datasets.
A generic video summary is an abridged version of a video that conveys the whole story and features the most important scenes. Yet the importance of scenes in a video is often subjective, and users should have the option of customizing the summary by using natural language to specify what is important to them. Further, existing models for fully automatic generic summarization have not exploited available language models, which can serve as an effective prior for saliency. This work introduces CLIP-It, a single framework for addressing both generic and query-focused video summarization, typically approached separately in the literature. We propose a language-guided multimodal transformer that learns to score frames in a video based on their importance relative to one another and their correlation with a user-defined query (for query-focused summarization) or an automatically generated dense video caption (for generic video summarization). Our model can be extended to the unsupervised setting by training without ground-truth supervision. We outperform baselines and prior work by a significant margin on both standard video summarization datasets (TVSum and SumMe) and a query-focused video summarization dataset (QFVS). Particularly, we achieve large improvements in the transfer setting, attesting to our methods strong generalization capabilities.
Image inpainting task requires filling the corrupted image with contents coherent with the context. This research field has achieved promising progress by using neural image inpainting methods. Nevertheless, there is still a critical challenge in gue ssing the missed content with only the context pixels. The goal of this paper is to fill the semantic information in corrupted images according to the provided descriptive text. Unique from existing text-guided image generation works, the inpainting models are required to compare the semantic content of the given text and the remaining part of the image, then find out the semantic content that should be filled for missing part. To fulfill such a task, we propose a novel inpainting model named Text-Guided Dual Attention Inpainting Network (TDANet). Firstly, a dual multimodal attention mechanism is designed to extract the explicit semantic information about the corrupted regions, which is done by comparing the descriptive text and complementary image areas through reciprocal attention. Secondly, an image-text matching loss is applied to maximize the semantic similarity of the generated image and the text. Experiments are conducted on two open datasets. Results show that the proposed TDANet model reaches new state-of-the-art on both quantitative and qualitative measures. Result analysis suggests that the generated images are consistent with the guidance text, enabling the generation of various results by providing different descriptions. Codes are available at https://github.com/idealwhite/TDANet
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا