ﻻ يوجد ملخص باللغة العربية
Integer partitions express the different ways that a positive integer may be written as a sum of other positive integers. Here we explore the analytic properties of a polynomial $f_lambda(x)$ that we call the partition polynomial for the partition $lambda$, with the hope of learning new properties of partitions. We prove a recursive formula for the derivatives of $f_lambda(x)$ involving Stirling numbers of the second kind, show that the set of integrals from 0 to 1 of a normalized version of $f_lambda(x)$ is dense in $[0,1/2]$, pose a few open questions, and formulate a conjecture relating the integral to the length of the partition. We also provide specific examples throughout to support our speculation that an in-depth analysis of partition polynomials could further strengthen our understanding of partitions.
Using the following $_4F_3$ transformation formula $$ sum_{k=0}^{n}{-x-1choose k}^2{xchoose n-k}^2=sum_{k=0}^{n}{n+kchoose 2k}{2kchoose k}^2{x+kchoose 2k}, $$ which can be proved by Zeilbergers algorithm, we confirm some special cases of a recent con
In recent work, M. Schneider and the first author studied a curious class of integer partitions called sequentially congruent partitions: the $m$th part is congruent to the $(m+1)$th part modulo $m$, with the smallest part congruent to zero modulo th
We study the row-space partition and the pivot partition on the matrix space $mathbb{F}_q^{n times m}$. We show that both these partitions are reflexive and that the row-space partition is self-dual. Moreover, using various combinatorial methods, we
Let $kappa$ be a positive real number and $minmathbb{N}cup{infty}$ be given. Let $p_{kappa, m}(n)$ denote the number of partitions of $n$ into the parts from the Piatestki-Shapiro sequence $(lfloor ell^{kappa}rfloor)_{ellin mathbb{N}}$ with at most $
A conjecture of Le says that the Deligne polytope $Delta_d$ is generically ordinary if $pequiv 1 (!!bmod D(Delta_d))$, where $D(Delta_d)$ is a combinatorial constant determined by $Delta_d$. In this paper a counterexample is given to show that the conjecture is not true in general.