ﻻ يوجد ملخص باللغة العربية
In machine learning applications, the reliability of predictions is significant for assisted decision and risk control. As an effective framework to quantify the prediction reliability, conformal prediction (CP) was developed with the CPKNN (CP with kNN). However, the conventional CPKNN suffers from high variance and bias and long computational time as the feature dimensionality increases. To address these limitations, a new CP framework-conformal prediction with shrunken centroids (CPSC) is proposed. It regularizes the class centroids to attenuate the irrelevant features and shrink the sample space for predictions and reliability quantification. To compare CPKNN and CPSC, we employed them in the classification of 12 categories of alternative herbal medicine with electronic nose as a case and assessed them in two tasks: 1) offline prediction: the training set was fixed and the accuracy on the testing set was evaluated; 2) online prediction with data augmentation: they filtered unlabeled data to augment the training data based on the prediction reliability and the final accuracy of testing set was compared. The result shows that CPSC significantly outperformed CPKNN in both two tasks: 1) CPSC reached a significantly higher accuracy with lower computation cost, and with the same credibility output, CPSC generally achieves a higher accuracy; 2) the data augmentation process with CPSC robustly manifested a statistically significant improvement in prediction accuracy with different reliability thresholds, and the augmented data were more balanced in classes. This novel CPSC provides higher prediction accuracy and better reliability quantification, which can be a reliable assistance in decision support.
Electronic nose has been proven to be effective in alternative herbal medicine classification, but due to the nature of supervised learning, previous research heavily relies on the labelled training data, which are time-costly and labor-intensive to
The origins of herbal medicines are important for their treatment effect, which could be potentially distinguished by electronic nose system. As the odor fingerprint of herbal medicines from different origins can be tiny, the discrimination of origin
A single gene can encode for different prote
In this paper, we present a novel approach for conformal prediction (CP), in which we aim to identify a set of promising prediction candidates -- in place of a single prediction. This set is guaranteed to contain a correct answer with high probabilit
The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathem