ترغب بنشر مسار تعليمي؟ اضغط هنا

CPSC: Conformal prediction with shrunken centroids for efficient prediction reliability quantification and data augmentation, a case in alternative herbal medicine classification with electronic nose

129   0   0.0 ( 0 )
 نشر من قبل Li Liu
 تاريخ النشر 2021
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In machine learning applications, the reliability of predictions is significant for assisted decision and risk control. As an effective framework to quantify the prediction reliability, conformal prediction (CP) was developed with the CPKNN (CP with kNN). However, the conventional CPKNN suffers from high variance and bias and long computational time as the feature dimensionality increases. To address these limitations, a new CP framework-conformal prediction with shrunken centroids (CPSC) is proposed. It regularizes the class centroids to attenuate the irrelevant features and shrink the sample space for predictions and reliability quantification. To compare CPKNN and CPSC, we employed them in the classification of 12 categories of alternative herbal medicine with electronic nose as a case and assessed them in two tasks: 1) offline prediction: the training set was fixed and the accuracy on the testing set was evaluated; 2) online prediction with data augmentation: they filtered unlabeled data to augment the training data based on the prediction reliability and the final accuracy of testing set was compared. The result shows that CPSC significantly outperformed CPKNN in both two tasks: 1) CPSC reached a significantly higher accuracy with lower computation cost, and with the same credibility output, CPSC generally achieves a higher accuracy; 2) the data augmentation process with CPSC robustly manifested a statistically significant improvement in prediction accuracy with different reliability thresholds, and the augmented data were more balanced in classes. This novel CPSC provides higher prediction accuracy and better reliability quantification, which can be a reliable assistance in decision support.



قيم البحث

اقرأ أيضاً

103 - Li Liu , Xianghao Zhan , Rumeng Wu 2021
Electronic nose has been proven to be effective in alternative herbal medicine classification, but due to the nature of supervised learning, previous research heavily relies on the labelled training data, which are time-costly and labor-intensive to collect. To alleviate the critical dependency on the training data in real-world applications, this study aims to improve classification accuracy via data augmentation strategies. The effectiveness of five data augmentation strategies under different training data inadequacy are investigated in two scenarios: the noise-free scenario where different availabilities of unlabelled data were considered, and the noisy scenario where different levels of Gaussian noises and translational shifts were added to represent sensor drifts. The five augmentation strategies, namely noise-adding data augmentation, semi-supervised learning, classifier-based online learning, Inductive Conformal Prediction (ICP) online learning and our novel ensemble ICP online learning proposed in this study, are experimented and compared against supervised learning baseline, with Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) as the classifiers. Our novel strategy, ensemble ICP online learning, outperforms the others by showing non-decreasing classification accuracy on all tasks and a significant improvement on most simulated tasks (25out of 36 tasks,p<=0.05). Furthermore, this study provides a systematic analysis of different augmentation strategies. It shows at least one strategy significantly improved the classification accuracy with LDA (p<=0.05) and non-decreasing classification accuracy with SVM in each task. In particular, our proposed strategy demonstrated both effectiveness and robustness in boosting the classification model generalizability, which can be employed in other machine learning applications.
The origins of herbal medicines are important for their treatment effect, which could be potentially distinguished by electronic nose system. As the odor fingerprint of herbal medicines from different origins can be tiny, the discrimination of origin s can be much harder than that of different categories. Better feature extraction methods are significant for this task to be more accurately done, but there lacks systematic studies on different feature extraction methods. In this study, we classified different origins of three categories of herbal medicines with different feature extraction methods: manual feature extraction, mathematical transformation, deep learning algorithms. With 50 repetitive experiments with bootstrapping, we compared the effectiveness of the extractions with a two-layer neural network w/o dimensionality reduction methods (principal component analysis, linear discriminant analysis) as the three base classifiers. Compared with the conventional aggregated features, the Fast Fourier Transform method and our novel approach (longitudinal-information-in-a-line) showed an significant accuracy improvement(p < 0.05) on all 3 base classifiers and all three herbal medicine categories. Two of the deep learning algorithm we applied also showed partially significant improvement: one-dimensional convolution neural network(1D-CNN) and a novel graph pooling based framework - multivariate time pooling(MTPool).
In this paper, we present a novel approach for conformal prediction (CP), in which we aim to identify a set of promising prediction candidates -- in place of a single prediction. This set is guaranteed to contain a correct answer with high probabilit y, and is well-suited for many open-ended classification tasks. In the standard CP paradigm, the predicted set can often be unusably large and also costly to obtain. This is particularly pervasive in settings where the correct answer is not unique, and the number of total possible answers is high. We first expand the CP correctness criterion to allow for additional, inferred admissible answers, which can substantially reduce the size of the predicted set while still providing valid performance guarantees. Second, we amortize costs by conformalizing prediction cascades, in which we aggressively prune implausible labels early on by using progressively stronger classifiers -- again, while still providing valid performance guarantees. We demonstrate the empirical effectiveness of our approach for multiple applications in natural language processing and computational chemistry for drug discovery.
The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathem atical and statistical techniques that enable modelers to gain insight into (models of) gene regulation, and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا