We establish a pointwise estimate of A along the mean curvature flow in terms of the initial geometry and the jHAj bound. As corollaries we obtain the extension theorem of HA and the blowup rate estimate of HA.
A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and
sphere. We show that the mean curvature flow preserves the isoparametric condition, develops singularities in finite time, and converges in finite time to a smooth submanifold of lower dimension. We also give a precise description of the collapsing.
In this article we study the breathers of the mean curvature flow in the Euclidean space. A breather is a solution to the mean curvature flow which repeats itself up to isometry and scaling once in a while. We prove several no breather theorems in th
e noncompact category, that is, under certain conditions, a breather of the mean curvature flow must be a solitonic solution (self-shrinker, self-expander, or translator).
In the last 15 years, White and Huisken-Sinestrari developed a far-reaching structure theory for the mean curvature flow of mean convex hypersurfaces. Their papers provide a package of estimates and structural results that yield a precise description
of singularities and of high curvature regions in a mean convex flow. In the present paper, we give a new treatment of the theory of mean convex (and k-convex) flows. This includes: (1) an estimate for derivatives of curvatures, (2) a convexity estimate, (3) a cylindrical estimate, (4) a global convergence theorem, (5) a structure theorem for ancient solutions, and (6) a partial regularity theorem. Our new proofs are both more elementary and substantially shorter than the original arguments. Our estimates are local and universal. A key ingredient in our new approach is the new non- collapsing result of Andrews. Some parts are also inspired by the work of Perelman. In a forthcoming paper, we will give a new construction of mean curvature flow with surgery based on the theorems established in the present paper.
In this paper we investigate the singularities of Lagrangian mean curvature flows in $mathbf{C}^m$ by means of smooth singularity models. Type I singularities can only occur at certain times determined by invariants in the cohomology of the initial d
ata. In the type II case, these smooth singularity models are asymptotic to special Lagrangian cones; hence all type II singularities are modeled by unions of special Lagrangian cones.
We prove the mean curvature flow of a spacelike graph in $(Sigma_1times Sigma_2, g_1-g_2)$ of a map $f:Sigma_1to Sigma_2$ from a closed Riemannian manifold $(Sigma_1,g_1)$ with $Ricci_1> 0$ to a complete Riemannian manifold $(Sigma_2,g_2)$ with bound
ed curvature tensor and derivatives, and with sectional curvatures satisfying $K_2leq K_1$, remains a spacelike graph, exists for all time, and converges to a slice at infinity. We also show, with no need of the assumption $K_2leq K_1$, that if $K_1>0$, or if $Ricci_1>0$ and $K_2leq -c$, $c>0$ constant, any map $f:Sigma_1to Sigma_2$ is trivially homotopic provided $f^*g_2<rho g_1$ where $rho=min_{Sigma_1}K_1/sup_{Sigma_2}K_2^+geq 0$, in case $K_1>0$, and $rho=+infty$ in case $K_2leq 0$. This largely extends some known results for $K_i$ constant and $Sigma_2$ compact, obtained using the Riemannian structure of $Sigma_1times Sigma_2$, and also shows how regularity theory on the mean curvature flow is simpler and more natural in pseudo-Riemannian setting then in the Riemannian one.