ﻻ يوجد ملخص باللغة العربية
In this paper, we give a simple formula for sectional curvatures on the general linear group, which is also valid for many other matrix groups. Similar formula is given for a reductive Lie group. We also discuss the relation between commuting matrices and zero sectional curvature.
We prove that for a connected, semisimple linear Lie group $G$ the spaces of generating pairs of elements or subgroups are well-behaved in a number of ways: the set of pairs of elements generating a dense subgroup is Zariski-open in the compact case,
The nilpotent bicone of a finite dimensional complex reductive Lie algebra g is the subset of elements in g x g whose subspace generated by the components is contained in the nilpotent cone of g. The main result of this note is that the nilpotent bic
Let $G$ be a reductive algebraic group---possibly non-connected---over a field $k$ and let $H$ be a subgroup of $G$. If $G= GL_n$ then there is a degeneration process for obtaining from $H$ a completely reducible subgroup $H$ of $G$; one takes a limi
The commuting variety of a reductive Lie algebra ${goth g}$ is the underlying variety of a well defined subscheme of $gg g{}$. In this note, it is proved that this scheme is normal. In particular, its ideal of definition is a prime ideal.
The generalized commuting and isospectral commuting varieties of a reductive Lie algebra have been introduced in a preceding article. In this note, it is proved that their normalizations are Gorenstein with rational singularities. Moreover, their can