ﻻ يوجد ملخص باللغة العربية
Crowd localization is a new computer vision task, evolved from crowd counting. Different from the latter, it provides more precise location information for each instance, not just counting numbers for the whole crowd scene, which brings greater challenges, especially in extremely congested crowd scenes. In this paper, we focus on how to achieve precise instance localization in high-density crowd scenes, and to alleviate the problem that the feature extraction ability of the traditional model is reduced due to the target occlusion, the image blur, etc. To this end, we propose a Dilated Convolutional Swin Transformer (DCST) for congested crowd scenes. Specifically, a window-based vision transformer is introduced into the crowd localization task, which effectively improves the capacity of representation learning. Then, the well-designed dilated convolutional module is inserted into some different stages of the transformer to enhance the large-range contextual information. Extensive experiments evidence the effectiveness of the proposed methods and achieve state-of-the-art performance on five popular datasets. Especially, the proposed model achieves F1-measure of 77.5% and MAE of 84.2 in terms of localization and counting performance, respectively.
The vision community is witnessing a modeling shift from CNNs to Transformers, where pure Transformer architectures have attained top accuracy on the major video recognition benchmarks. These video models are all built on Transformer layers that glob
The mainstream crowd counting methods usually utilize the convolution neural network (CNN) to regress a density map, requiring point-level annotations. However, annotating each person with a point is an expensive and laborious process. During the tes
Automatic medical image segmentation has made great progress benefit from the development of deep learning. However, most existing methods are based on convolutional neural networks (CNNs), which fail to build long-range dependencies and global conte
Transformer models have recently attracted much interest from computer vision researchers and have since been successfully employed for several problems traditionally addressed with convolutional neural networks. At the same time, image synthesis usi
Image restoration is a long-standing low-level vision problem that aims to restore high-quality images from low-quality images (e.g., downscaled, noisy and compressed images). While state-of-the-art image restoration methods are based on convolutiona