ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal bounds for fixed point iterations via optimal transport metrics

55   0   0.0 ( 0 )
 نشر من قبل Roberto Cominetti
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a self-contained analysis of a particular family of metrics over the set of non-negative integers. We show that these metrics, which are defined through a nested sequence of optimal transport problems, provide tight estimates for general Krasnoselskii-Mann fixed point iterations for non-expansive maps. We also describe some of their very special properties, including their monotonicity and the so-called convex quadrangle inequality that yields a greedy algorithm to compute them efficiently.



قيم البحث

اقرأ أيضاً

This paper investigates optimal error bounds and convergence rates for general Mann iterations for computing fixed-points of non-expansive maps in normed spaces. We look for iterations that achieve the smallest fixed-point residual after $n$ steps, b y minimizing a worst-case bound $|x^n-Tx^n|le R_n$ derived from a nested family of optimal transport problems. We prove that this bound is tight so that minimizing $R_n$ yields optimal iterations. Inspired from numerical results we identify iterations that attain the rate $R_n=O(1/n)$, which we also show to be the best possible. In particular, we prove that the classical Halpern iteration achieves this optimal rate for several alternative stepsizes, and we determine analytically the optimal stepsizes that attain the smallest worst-case residuals at every step $n$, with a tight bound $R_napproxfrac{4}{n+4}$. We also determine the optimal Halpern stepsizes for affine nonexpansive maps, for which we get exactly $R_n=frac{1}{n+1}$. Finally, we show that the best rate for the classical Krasnoselskiu{i}-Mann iteration is $Omega(1/sqrt{n})$, and we present numerical evidence suggesting that even after introducing inertial terms one cannot reach the faster rate $O(1/n)$.
383 - Yizun Lin , Yuesheng Xu 2021
We estimate convergence rates for fixed-point iterations of a class of nonlinear operators which are partially motivated from solving convex optimization problems. We introduce the notion of the generalized averaged nonexpansive (GAN) operator with a positive exponent, and provide a convergence rate analysis of the fixed-point iteration of the GAN operator. The proposed generalized averaged nonexpansiveness is weaker than the averaged nonexpansiveness while stronger than nonexpansiveness. We show that the fixed-point iteration of a GAN operator with a positive exponent converges to its fixed-point and estimate the local convergence rate (the convergence rate in terms of the distance between consecutive iterates) according to the range of the exponent. We prove that the fixed-point iteration of a GAN operator with a positive exponent strictly smaller than 1 can achieve an exponential global convergence rate (the convergence rate in terms of the distance between an iterate and the solution). Furthermore, we establish the global convergence rate of the fixed-point iteration of a GAN operator, depending on both the exponent of generalized averaged nonexpansiveness and the exponent of the H$ddot{text{o}}$lder regularity, if the GAN operator is also H$ddot{text{o}}$lder regular. We then apply the established theory to three types of convex optimization problems that appear often in data science to design fixed-point iterative algorithms for solving these optimization problems and to analyze their convergence properties.
104 - Wuchen Li , Guido Montufar 2018
We study a natural Wasserstein gradient flow on manifolds of probability distributions with discrete sample spaces. We derive the Riemannian structure for the probability simplex from the dynamical formulation of the Wasserstein distance on a weighte d graph. We pull back the geometric structure to the parameter space of any given probability model, which allows us to define a natural gradient flow there. In contrast to the natural Fisher-Rao gradient, the natural Wasserstein gradient incorporates a ground metric on sample space. We illustrate the analysis of elementary exponential family examples and demonstrate an application of the Wasserstein natural gradient to maximum likelihood estimation.
For optimal power flow problems with chance constraints, a particularly effective method is based on a fixed point iteration applied to a sequence of deterministic power flow problems. However, a priori, the convergence of such an approach is not nec essarily guaranteed. This article analyses the convergence conditions for this fixed point approach, and reports numerical experiments including for large IEEE networks.
In this paper, we consider a discrete-time stochastic control problem with uncertain initial and target states. We first discuss the connection between optimal transport and stochastic control problems of this form. Next, we formulate a linear-quadra tic regulator problem where the initial and terminal states are distributed according to specified probability densities. A closed-form solution for the optimal transport map in the case of linear-time varying systems is derived, along with an algorithm for computing the optimal map. Two numerical examples pertaining to swarm deployment demonstrate the practical applicability of the model, and performance of the numerical method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا