ترغب بنشر مسار تعليمي؟ اضغط هنا

Quaternionic slice hyperbolic backward shift operators and adaptive greedy algorithm

85   0   0.0 ( 0 )
 نشر من قبل Jin Ming
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the slice Hardy space over the unit ball of quaternions, we introduce the slice hyperbolic backward shift operators $mathcal S_a$ based on the identity $$f=e_alangle f, e_arangle+B_{a}*mathcal S_a f,$$ where $e_a$ denotes the slice normalized Szego kernel and $ B_a $ the slice Mobius transformation. By iterating the identity above, the greedy algorithm gives rise to the slice adaptive Fourier decomposition via maximum selection principle. This leads to the slice Takenaka-Malmquist orthonormal system.



قيم البحث

اقرأ أيضاً

In this paper, we introduce the quaternionic slice polyanalytic functions and we prove some of their properties. Then, we apply the obtained results to begin the study of the quaternionic Fock and Bergman spaces in this new setting. In particular, we give explicit expressions of their reproducing kernels.
109 - Xieping Wang 2015
The purpose of this paper is twofold. One is to enrich from a geometrical point of view the theory of octonionic slice regular functions. We first prove a boundary Schwarz lemma for slice regular self-mappings of the open unit ball of the octonionic space. As applications, we obtain two Landau-Toeplitz type theorems for slice regular functions with respect to regular diameter and slice diameter respectively, together with a Cauchy type estimate. Along with these results, we introduce some new and useful ideas, which also allow to prove the minimum principle and one version of the open mapping theorem. Another is to strengthen a version of boundary Schwarz lemma first proved in cite{WR} for quaternionic slice regular functions, with a completely new approach. Our quaternionic boundary Schwarz lemma with optimal estimate improves considerably a well-known Osserman type estimate and provides additionally all the extremal functions.
103 - Zhenghua Xu , Xieping Wang 2016
In this paper we prove two Bloch type theorems for quaternionic slice regular functions. We first discuss the injective and covering properties of some classes of slice regular functions from slice regular Bloch spaces and slice regular Bergman space s, respectively. And then we show that there exits a universal ball contained in the image of the open unit ball $mathbb{B}$ in quaternions $mathbb{H}$ through the slice regular rotation $widetilde{f}_{u}$ of each slice regular function $f:overline{mathbb{B}}rightarrow mathbb{H}$ with $f(0)=1$ for some $uin partialmathbb{B}$.
323 - Andreas Hartmann 2008
By a famous result, functions in backward shift invariant subspaces in Hardy spaces are characterized by the fact that they admit a pseudocontinuation a.e. on $T$. More can be said if the spectrum of the associated inner function has holes on $T$. Th en the functions of the invariant subspaces even extend analytically through these holes. We will discuss the situation in weighted backward shift invariant subspaces. The results on analytic continuation will be applied to consider some embeddings of weighted invariant subspaces into their unweighted companions. Such weight
79 - Tao Qian , Jianzhong Wang 2018
The paper investigates the complex gradient descent method (CGD) for the best rational approximation of a given order to a function in the Hardy space on the unit disk. It is equivalent to finding the best Blaschke form with free poles. The adaptive Fourier decomposition (AFD) and the cyclic AFD methods in literature are based on the grid search technique. The precision of these methods is limited by the grid spacing. The proposed method employs a fast search algorithm to find the initial for CGD, then finds the target poles by gradient descent optimization. Hence, it can reach higher precision with less computation cost. Its validity and effectiveness are confirmed by several examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا