ترغب بنشر مسار تعليمي؟ اضغط هنا

Manifold-Inspired Single Image Interpolation

82   0   0.0 ( 0 )
 نشر من قبل Lantao Yu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Manifold models consider natural-image patches to be on a low-dimensional manifold embedded in a high dimensional state space and each patch and its similar patches to approximately lie on a linear affine subspace. Manifold models are closely related to semi-local similarity, a well-known property of natural images, referring to that for most natural-image patches, several similar patches can be found in its spatial neighborhood. Many approaches to single image interpolation use manifold models to exploit semi-local similarity by two mutually exclusive parts: i) searching each target patchs similar patches and ii) operating on the searched similar patches, the target patch and the measured input pixels to estimate the target patch. Unfortunately, aliasing in the input image makes it challenging for both parts. A very few works explicitly deal with those challenges and only ad-hoc solutions are proposed. To overcome the challenge in the first part, we propose a carefully-designed adaptive technique to remove aliasing in severely aliased regions, which cannot be removed from traditional techniques. This technique enables reliable identification of similar patches even in the presence of strong aliasing. To overcome the challenge in the second part, we propose to use the aliasing-removed image to guide the initialization of the interpolated image and develop a progressive scheme to refine the interpolated image based on manifold models. Experimental results demonstrate that our approach reconstructs edges with both smoothness along contours and sharpness across profiles, and achieves an average Peak Signal-to-Noise Ratio (PSNR) significantly higher than existing model-based approaches.

قيم البحث

اقرأ أيضاً

An ever increasing amount of our digital communication, media consumption, and content creation revolves around videos. We share, watch, and archive many aspects of our lives through them, all of which are powered by strong video compression. Traditi onal video compression is laboriously hand designed and hand optimized. This paper presents an alternative in an end-to-end deep learning codec. Our codec builds on one simple idea: Video compression is repeated image interpolation. It thus benefits from recent advances in deep image interpolation and generation. Our deep video codec outperforms todays prevailing codecs, such as H.261, MPEG-4 Part 2, and performs on par with H.264.
Deep learning methods have played a more and more important role in hyperspectral image classification. However, the general deep learning methods mainly take advantage of the information of sample itself or the pairwise information between samples w hile ignore the intrinsic data structure within the whole data. To tackle this problem, this work develops a novel deep manifold embedding method(DMEM) for hyperspectral image classification. First, each class in the image is modelled as a specific nonlinear manifold and the geodesic distance is used to measure the correlation between the samples. Then, based on the hierarchical clustering, the manifold structure of the data can be captured and each nonlinear data manifold can be divided into several sub-classes. Finally, considering the distribution of each sub-class and the correlation between different subclasses, the DMEM is constructed to preserve the estimated geodesic distances on the data manifold between the learned low dimensional features of different samples. Experiments over three real-world hyperspectral image datasets have demonstrated the effectiveness of the proposed method.
Image reconstruction plays a critical role in the implementation of all contemporary imaging modalities across the physical and life sciences including optical, MRI, CT, PET, and radio astronomy. During an image acquisition, the sensor encodes an int ermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain whose composition depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. We present here a unified framework for image reconstruction, AUtomated TransfOrm by Manifold APproximation (AUTOMAP), which recasts image reconstruction as a data-driven, supervised learning task that allows a mapping between sensor and image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for a variety of MRI acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate its efficiency in sparsely representing transforms along low-dimensional manifolds, resulting in superior immunity to noise and reconstruction artifacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate accelerating the discovery of new acquisition strategies across modalities as the burden of reconstruction becomes lifted by AUTOMAP and learned-reconstruction approaches.
We suggest to represent an X-Field -a set of 2D images taken across different view, time or illumination conditions, i.e., video, light field, reflectance fields or combinations thereof-by learning a neural network (NN) to map their view, time or lig ht coordinates to 2D images. Executing this NN at new coordinates results in joint view, time or light interpolation. The key idea to make this workable is a NN that already knows the basic tricks of graphics (lighting, 3D projection, occlusion) in a hard-coded and differentiable form. The NN represents the input to that rendering as an implicit map, that for any view, time, or light coordinate and for any pixel can quantify how it will move if view, time or light coordinates change (Jacobian of pixel position with respect to view, time, illumination, etc.). Our X-Field representation is trained for one scene within minutes, leading to a compact set of trainable parameters and hence real-time navigation in view, time and illumination.
124 - Shenglan Liu , Jun Wu , Lin Feng 2016
Incompatibility of image descriptor and ranking is always neglected in image retrieval. In this paper, manifold learning and Gestalt psychology theory are involved to solve the incompatibility problem. A new holistic descriptor called Perceptual Unif orm Descriptor (PUD) based on Gestalt psychology is proposed, which combines color and gradient direction to imitate the human visual uniformity. PUD features in the same class images distributes on one manifold in most cases because PUD improves the visual uniformity of the traditional descriptors. Thus, we use manifold ranking and PUD to realize image retrieval. Experiments were carried out on five benchmark data sets, and the proposed method can greatly improve the accuracy of image retrieval. Our experimental results in the Ukbench and Corel-1K datasets demonstrated that N-S score reached to 3.58 (HSV 3.4) and mAP to 81.77% (ODBTC 77.9%) respectively by utilizing PUD which has only 280 dimension. The results are higher than other holistic image descriptors (even some local ones) and state-of-the-arts retrieval methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا