ﻻ يوجد ملخص باللغة العربية
In fringe projection profilometry, the high-order harmonics information of non-sinusoidal fringes will lead to errors in the phase estimation. In order to solve this problem, a point-wise posterior phase estimation (PWPPE) method based on deep learning technique is proposed in this paper. The complex nonlinear mapping relationship between the multiple gray values and the sine / cosine value of the phase is constructed by using the feedforward neural network model. After the model training, it can estimate the phase values of each pixel location, and the accuracy is higher than the point-wise least-square (PWLS) method. To further verify the effectiveness of this method, a face mask is measured, the traditional PWLS method and the proposed PWPPE method are employed, respectively. The comparison results show that the traditional method is with periodic phase errors, while the proposed PWPPE method can effectively eliminate such phase errors caused by non-sinusoidal fringes.
Multiple works have applied deep learning to fringe projection profilometry (FPP) in recent years. However, to obtain a large amount of data from actual systems for training is still a tricky problem, and moreover, the network design and optimization
Since its inception, the neural estimation of mutual information (MI) has demonstrated the empirical success of modeling expected dependency between high-dimensional random variables. However, MI is an aggregate statistic and cannot be used to measur
Inverse problems in image processing are typically cast as optimization tasks, consisting of data-fidelity and stabilizing regularization terms. A recent regularization strategy of great interest utilizes the power of denoising engines. Two such meth
Fringe projection profilometry (FPP) has become increasingly important in dynamic 3-D shape measurement. In FPP, it is necessary to retrieve the phase of the measured object before shape profiling. However, traditional phase retrieval techniques ofte
In this paper, we introduce a direction of arrival (DoA) estimation method based on a technique named phase spectrometry (PS) that is mainly suitable for mm-Wave and Tera-hertz applications as an alternative for DoA estimation using antenna arrays. P