ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the ($pi^-$, Ar) total hadronic cross section at the LArIAT experiment

516   0   0.0 ( 0 )
 نشر من قبل Elena Gramellini
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first measurement of the negative pion total hadronic cross section on argon, which we performed at the Liquid Argon In A Testbeam (LArIAT) experiment. All hadronic reaction channels, as well as hadronic elastic interactions with scattering angle greater than 5~degrees are included. The pions have a kinetic energies in the range 100-700~MeV and are produced by a beam of charged particles impinging on a solid target at the Fermilab Test Beam Facility. LArIAT employs a 0.24~ton active mass Liquid Argon Time Projection Chamber (LArTPC) to measure the pion hadronic interactions. For this measurement, LArIAT has developed the ``thin slice method, a new technique to measure cross sections with LArTPCs. While generally higher than the prediction, our measurement of the ($pi^-$,Ar) total hadronic cross section is in agreement with the prediction of the Geant4 model when considering a model uncertainty of $sim$5.1%.

قيم البحث

اقرأ أيضاً

The LArIAT liquid argon time projection chamber, placed in a tertiary beam of charged particles at the Fermilab Test Beam Facility, has collected large samples of pions, muons, electrons, protons, and kaons in the momentum range 300-1400 MeV/c. This paper describes the main aspects of the detector and beamline, and also reports on calibrations performed for the detector and beamline components.
70 - H. Dai , M. Murphy , V. Pandey 2018
The success of the ambitious programs of both long- and short-baseline neutrino-oscillation experiments employing liquid-argon time-projection chambers will greatly rely on the precision with which the weak response of the argon nucleus can be estima ted. In the E12-14-012 experiment at Jefferson Lab Hall A, we have studied the properties of the argon nucleus by scattering a high-quality electron beam off a high-pressure gaseous argon target. Here, we present the measured $^{40}$Ar$(e,e^{prime})$ double differential cross section at incident electron energy $E=2.222$~GeV and scattering angle $theta = 15.541^circ$. The data cover a broad range of energy transfers, where quasielastic scattering and delta production are the dominant reaction mechanisms. The result for argon is compared to our previously reported cross sections for titanium and carbon, obtained in the same kinematical setup.
XSEN (Cross Section of Energetic Neutrinos) is a small experiment designed to study, for the first time, neutrino-nucleon interactions (including the tau flavour) in the 0.5-1 TeV neutrino energy range. The detector will be installed in the decommiss ioned TI18 tunnel and uses nuclear emulsions. Its simplicity allows construction and installation before the LHC Run 3, 2021-2023; with 150/fb in Run3, the experiment can record up to two thousand neutrino interactions, and up to a hundred tau neutrino events. The XSEN detector intercepts the intense neutrino flux, generated by the LHC beams colliding in IP1, at large pseudo-rapidities, where neutrino energies can exceed the TeV. Since the neutrino-N interaction cross section grows almost linearly with energy, the detector can be light and still collect a considerable sample of neutrino interactions. In our proposal, the detector weighs less than 3 tons. It is lying slightly above the ideal prolongation of the LHC beam from the straight section; this configuration, off the beam axis, although very close to it, enhances the contribution of neutrinos from c and b decays, and consequently of tau neutrinos. The detector fits in the TI18 tunnel without modifications. We plan for a demonstrator experiment in 2021 with a small detector of about 0.5 tons; with 25/fb, nearly a hundred interactions of neutrinos of about 1 TeV can be recorded. The aim of this pilot run is a good in-situ characterisation of the machine-generated backgrounds, an experimental verification of the systematic uncertainties and efficiencies, and a tuning of the emulsion analysis infrastructure and efficiency. This Letter provides an overview of the experiment motivations, location, design constraints, technology choice, and operation.
The luminosity in the ZEUS detector was measured using photons from electron bremsstrahlung. In 2001 the HERA collider was upgraded for operation at higher luminosity. At the same time the luminosity-measuring system of the ZEUS experiment was modifi ed to tackle the expected higher photon rate and synchrotron radiation. The existing lead-scintillator calorimeter was equipped with radiation hard scintillator tiles and shielded against synchrotron radiation. In addition, a magnetic spectrometer was installed to measure the luminosity independently using photons converted in the beam-pipe exit window. The redundancy provided a reliable and robust luminosity determination with a systematic uncertainty of 1.7%. The experimental setup, the techniques used for luminosity determination and the estimate of the systematic uncertainty are reported.
This paper reports on laser-induced multiphoton ionization at 266 nm of liquid argon in a time projection chamber (LAr TPC) detector. The electron signal produced by the laser beam is a formidable tool for the calibration and monitoring of next-gener ation large-mass LAr TPCs. The detector that we designed and tested allowed us to measure the two-photon absorption cross-section of LAr with unprecedented accuracy and precision: sigma_ex=(1.24pm 0.10stat pm 0.30syst) 10^{-56} cm^4s{-1}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا