ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of regularization on spectral clustering under the mixed membership stochastic block model

97   0   0.0 ( 0 )
 نشر من قبل Jingli Wang
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Mixed membership community detection is a challenge problem in network analysis. To estimate the memberships and study the impact of regularized spectral clustering under the mixed membership stochastic block (MMSB) model, this article proposes two efficient spectral clustering approaches based on regularized Laplacian matrix, Simplex Regularized Spectral Clustering (SRSC) and Cone Regularized Spectral Clustering (CRSC). SRSC and CRSC methods are designed based on the ideal simplex structure and the ideal cone structure in the variants of the eigen-decomposition of the population regularized Laplacian matrix. We show that these two approaches SRSC and CRSC are asymptotically consistent under mild conditions by providing error bounds for the inferred membership vector of each node under MMSB. Through the theoretical analysis, we give the upper and lower bound for the regularizer $tau$. By introducing a parametric convergence probability, we can directly see that when $tau$ is large these two methods may still have low error rates but with a smaller probability. Thus we give an empirical optimal choice of $tau$ is $O(log(n))$ with $n$ the number of nodes to detect sparse networks. The proposed two approaches are successfully applied to synthetic and empirical networks with encouraging results compared with some benchmark methods.



قيم البحث

اقرأ أيضاً

112 - Huan Qing , Jingli Wang 2020
Community detection in network analysis is an attractive research area recently. Here, under the degree-corrected mixed membership (DCMM) model, we propose an efficient approach called mixed regularized spectral clustering (Mixed-RSC for short) based on the regularized Laplacian matrix. Mixed-RSC is designed based on an ideal cone structure of the variant for the eigen-decomposition of the population regularized Laplacian matrix. We show that the algorithm is asymptotically consistent under mild conditions by providing error bounds for the inferred membership vector of each node. As a byproduct of our bound, we provide the theoretical optimal choice for the regularization parameter {tau}. To demonstrate the performance of our method, we apply it with previous benchmark methods on both simulated and real-world networks. To our knowledge, this is the first work to design spectral clustering algorithm for mixed membership community detection problem under DCMM model based on the application of regularized Laplacian matrix.
With ever-increasing amounts of online information available, modeling and predicting individual preferences-for books or articles, for example-is becoming more and more important. Good predictions enable us to improve advice to users, and obtain a b etter understanding of the socio-psychological processes that determine those preferences. We have developed a collaborative filtering model, with an associated scalable algorithm, that makes accurate predictions of individuals preferences. Our approach is based on the explicit assumption that there are groups of individuals and of items, and that the preferences of an individual for an item are determined only by their group memberships. Importantly, we allow each individual and each item to belong simultaneously to mixtures of different groups and, unlike many popular approaches, such as matrix factorization, we do not assume implicitly or explicitly that individuals in each group prefer items in a single group of items. The resulting overlapping groups and the predicted preferences can be inferred with a expectation-maximization algorithm whose running time scales linearly (per iteration). Our approach enables us to predict individual preferences in large datasets, and is considerably more accurate than the current algorithms for such large datasets.
118 - Huan Qing , Jingli Wang 2020
Community detection has been well studied recent years, but the more realistic case of mixed membership community detection remains a challenge. Here, we develop an efficient spectral algorithm Mixed-ISC based on applying more than K eigenvectors for clustering given K communities for estimating the community memberships under the degree-corrected mixed membership (DCMM) model. We show that the algorithm is asymptotically consistent. Numerical experiments on both simulated networks and many empirical networks demonstrate that Mixed-ISC performs well compared to a number of benchmark methods for mixed membership community detection. Especially, Mixed-ISC provides satisfactory performances on weak signal networks.
335 - Huan Qing , Jingli Wang 2021
Mixed membership problem for undirected network has been well studied in network analysis recent years. However, the more general case of mixed membership for directed network remains a challenge. Here, we propose an interpretable model: bipartite mi xed membership stochastic blockmodel (BiMMSB for short) for directed mixed membership networks. BiMMSB allows that row nodes and column nodes of the adjacency matrix can be different and these nodes may have distinct community structure in a directed network. We also develop an efficient spectral algorithm called BiMPCA to estimate the mixed memberships for both row nodes and column nodes in a directed network. We show that the approach is asymptotically consistent under BiMMSB. We demonstrate the advantages of BiMMSB with applications to a small-scale simulation study, the directed Political blogs network and the Papers Citations network.
Clustering task of mixed data is a challenging problem. In a probabilistic framework, the main difficulty is due to a shortage of conventional distributions for such data. In this paper, we propose to achieve the mixed data clustering with a Gaussian copula mixture model, since copulas, and in particular the Gaussian ones, are powerful tools for easily modelling the distribution of multivariate variables. Indeed, considering a mixing of continuous, integer and ordinal variables (thus all having a cumulative distribution function), this copula mixture model defines intra-component dependencies similar to a Gaussian mixture, so with classical correlation meaning. Simultaneously, it preserves standard margins associated to continuous, integer and ordered features, namely the Gaussian, the Poisson and the ordered multinomial distributions. As an interesting by-product, the proposed mixture model generalizes many well-known ones and also provides tools of visualization based on the parameters. At a practical level, the Bayesian inference is retained and it is achieved with a Metropolis-within-Gibbs sampler. Experiments on simulated and real data sets finally illustrate the expected advantages of the proposed model for mixed data: flexible and meaningful parametrization combined with visualization features.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا