ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent control of electron spin qubits in silicon using a global field

79   0   0.0 ( 0 )
 نشر من قبل Ensar Vahapoglu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicon spin qubits promise to leverage the extraordinary progress in silicon nanoelectronic device fabrication over the past half century to deliver large-scale quantum processors. Despite the scalability advantage of using silicon technology, constructing a quantum computer with the millions of qubits required to run some of the most demanding quantum algorithms poses several outstanding challenges. Recently, compact 3D microwave dielectric resonators were proposed as a way to deliver the magnetic fields for spin qubit control across an entire quantum chip using only a single microwave source. Although spin resonance of individual electrons in the globally applied microwave field was demonstrated, the spins were controlled incoherently. Here we report coherent Rabi oscillations of single electron spin qubits in a planar SiMOS quantum dot device using a global magnetic field generated off-chip. The observation of coherent qubit control driven by a dielectric resonator establishes a credible pathway to achieving large-scale control in a spin-based quantum computer.

قيم البحث

اقرأ أيضاً

We propose a method to electrically control electron spins in donor-based qubits in silicon. By taking advantage of the hyperfine coupling difference between a single-donor and a two-donor quantum dot, spin rotation can be driven by inducing an elect ric dipole between them and applying an alternating electric field generated by in-plane gates. These qubits can be coupled with exchange interaction controlled by top detuning gates. The qubit device can be fabricated deep in the silicon lattice with atomic precision by scanning tunneling probe technique. We have combined a large-scale full band atomistic tight-binding modeling approach with a time-dependent effective Hamiltonian description, providing a design with quantitative guidelines.
Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, e.g. in chemistry, medicine, materials science and mining. Nuclear spins also featured in early ideas and d emonstrations of quantum information processing. Scaling up these ideas requires controlling individual nuclei, which can be detected when coupled to an electron. However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods relied upon transducing electric signals into magnetic fields via the electron-nuclear hyperfine interaction, which severely affects the nuclear coherence. Here we demonstrate the coherent quantum control of a single antimony (spin-7/2) nucleus, using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea first proposed in 1961 but never realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction, in the presence of lattice strain, results in coherent nuclear spin transitions. The spin dephasing time, 0.1 seconds, surpasses by orders of magnitude those obtained via methods that require a coupled electron spin for electrical drive. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots could pave the way to scalable nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields.
Spin-based silicon quantum electronic circuits offer a scalable platform for quantum computation, combining the manufacturability of semiconductor devices with the long coherence times afforded by spins in silicon. Advancing from current few-qubit de vices to silicon quantum processors with upwards of a million qubits, as required for fault-tolerant operation, presents several unique challenges, one of the most demanding being the ability to deliver microwave signals for large-scale qubit control. Here we demonstrate a potential solution to this problem by using a three-dimensional dielectric resonator to broadcast a global microwave signal across a quantum nanoelectronic circuit. Critically, this technique utilizes only a single microwave source and is capable of delivering control signals to millions of qubits simultaneously. We show that the global field can be used to perform spin resonance of single electrons confined in a silicon double quantum dot device, establishing the feasibility of this approach for scalable spin qubit control.
Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV materials, the spin-bearing nuclei are sufficiently rare that it is possible to iden tify and control individual host nuclear spins. This work presents the first experimental detection and manipulation of a single $^{29}$Si nuclear spin. The quantum non-demolition (QND) single-shot readout of the spin is demonstrated, and a Hahn echo measurement reveals a coherence time of $T_2 = 6.3(7)$ ms - in excellent agreement with bulk experiments. Atomistic modeling combined with extracted experimental parameters provides possible lattice sites for the $^{29}$Si atom under investigation. These results demonstrate that single $^{29}$Si nuclear spins could serve as a valuable resource in a silicon spin-based quantum computer.
75 - A. Crippa , R. Ezzouch , A. Apra 2018
Silicon spin qubits have emerged as a promising path to large-scale quantum processors. In this prospect, the development of scalable qubit readout schemes involving a minimal device overhead is a compelling step. Here we report the implementation of gate-coupled rf reflectometry for the dispersive readout of a fully functional spin qubit device. We use a p-type double-gate transistor made using industry-standard silicon technology. The first gate confines a hole quantum dot encoding the spin qubit, the second one a helper dot enabling readout. The qubit state is measured through the phase response of a lumped-element resonator to spin-selective interdot tunneling. The demonstrated qubit readout scheme requires no coupling to a Fermi reservoir, thereby offering a compact and potentially scalable solution whose operation may be extended above 1,K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا