ترغب بنشر مسار تعليمي؟ اضغط هنا

Truncated linear statistics in the one dimensional one-component plasma

106   0   0.0 ( 0 )
 نشر من قبل Gregory Schehr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the probability distribution of the observable $s = (1/N)sum_{i=N-N+1}^N x_i$, with $1 leq N leq N$ and $x_1<x_2<cdots< x_N$ representing the ordered positions of $N$ particles in a $1d$ one-component plasma, i.e., $N$ harmonically confined charges on a line, with pairwise repulsive $1d$ Coulomb interaction $|x_i-x_j|$. This observable represents an example of a truncated linear statistics -- here the center of mass of the $N = kappa , N$ (with $0 < kappa leq 1$) rightmost particles. It interpolates between the position of the rightmost particle (in the limit $kappa to 0$) and the full center of mass (in the limit $kappa to 1$). We show that, for large $N$, $s$ fluctuates around its mean $langle s rangle$ and the typical fluctuations are Gaussian, of width $O(N^{-3/2})$. The atypical large fluctuations of $s$, for fixed $kappa$, are instead described by a large deviation form ${cal P}_{N, kappa}(s)simeq exp{left[-N^3 phi_kappa(s)right]}$, where the rate function $phi_kappa(s)$ is computed analytically. We show that $phi_{kappa}(s)$ takes different functional forms in five distinct regions in the $(kappa,s)$ plane separated by phase boundaries, thus leading to a rich phase diagram in the $(kappa,s)$ plane. Across all the phase boundaries the rate function $phi(kappa,s)$ undergoes a third-order phase transition. This rate function is also evaluated numerically using a sophisticated importance sampling method, and we find a perfect agreement with our analytical predictions.



قيم البحث

اقرأ أيضاً

We study the one-dimensional sine-Gordon model as a prototype of roughening phenomena. In spite of the fact that it has been recently proven that this model can not have any phase transition [J. A. Cuesta and A. Sanchez, J. Phys. A 35, 2373 (2002)], Langevin as well as Monte Carlo simulations strongly suggest the existence of a finite temperature separating a flat from a rough phase. We explain this result by means of the transfer operator formalism and show as a consequence that sine-Gordon lattices of any practically achievable size will exhibit this apparent phase transition at unexpectedly large temperatures.
We exploit mappings between quantum and classical systems in order to obtain a class of two-dimensional classical systems with critical properties equivalent to those of the class of one-dimensional quantum systems discussed in a companion paper (J. Hutchinson, J. P. Keating, and F. Mezzadri, arXiv:1503.05732). In particular, we use three approaches: the Trotter-Suzuki mapping; the method of coherent states; and a calculation based on commuting the quantum Hamiltonian with the transfer matrix of a classical system. This enables us to establish universality of certain critical phenomena by extension from the results in our previous article for the classical systems identified.
Using Yang and Yangs particle-hole description, we present a thorough derivation of the thermodynamic Bethe ansatz equations for a general $SU(kappa)$ fermionic system in one-dimension for both the repulsive and attractive regimes under the presence of an external magnetic field. These equations are derived from Sutherlands Bethe ansatz equations by using the spin-string hypothesis. The Bethe ansatz root patterns for the attractive case are discussed in detail. The relationship between the various phases of the magnetic phase diagrams and the external magnetic fields is given for the attractive case. We also give a quantitative description of the ground state energies for both strongly repulsive and strongly attractive regimes.
131 - D. Levesque , J.-J. Weis 1999
We study, via computer simulations, the fluctuations in the net electric charge, in a two dimensional one component plasma (OCP) with uniform background charge density $-e rho$, in a region $Lambda$ inside a much larger overall neutral system. Settin g $e=1$ this is the same as the fluctuations in $N_Lambda$, the number of mobile particles of charge $e$. As expected the distribution of $ N_Lambda$ has, for large $Lambda$, a Gaussian form with a variance which grows only as $hat kappa |partial Lambda|$, where $|partial Lambda|$ is the length of the perimeter of $Lambda$. The properties of this system depend only on the coupling parameter $Gamma = kT$ which is the same as the reciprocal temperature in our units. Our simulations show that when the coupling parameter $Gamma$ increases, $hat kappa(Gamma)$ decreases to an asymptotic value $hat kappa(infty) sim hat kappa(2)/2$ which is equal (or very close) to that obtained for the corresponding variance of particles on a rigid triangular lattice. Thus, for large $Gamma$, the characteristic length $xi_L = 2hat kappa/rho$ associated with charge fluctuations behaves very differently from that of the Debye length, $xi_D sim 1/sqrt Gamma$, which it approaches as $Gamma to 0$. The pair correlation function of the OCP is also studied.
We discuss recent results on the relation between the strongly interacting one-dimensional Bose gas and a gas of ideal particles obeying nonmutual generalized exclusion statistics (GES). The thermodynamic properties considered include the statistical profiles, the specific heat and local pair correlations. In the strong coupling limit $gamma to infty$, the Tonks-Girardeau gas, the equivalence is with Fermi statistics. The deviation from Fermi statistics during boson fermionization for finite but large interaction strength $gamma$ is described by the relation $alpha approx 1 - 2/gamma$, where $alpha$ is a measure of the GES. This gives a quantitative description of the fermionization process. In this sense the recent experimental measurement of local pair correlations in a 1D Bose gas of $^{87}$Rb atoms also provides a measure of the deviation of the GES parameter $alpha$ away from the pure Fermi statistics value $alpha=1$. Other thermodynamic properties, such as the distribution profiles and the specific heat, are also sensitive to the statistics. They also thus provide a way of exploring fractional statistics in the strongly interacting 1D Bose gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا