ترغب بنشر مسار تعليمي؟ اضغط هنا

Partially Diffusive Helium-Silica Compound in the Deep Interiors of Giant Planets

242   0   0.0 ( 0 )
 نشر من قبل Jian Sun
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Helium is the second most abundant element in the universe, and together with silica, they are major components of giant planets. Exploring the reactivity and state of helium and silica under high pressure is of fundamental importance for developing and understanding of the evolution and internal structure of giant planets. Here, using first-principles calculations and crystal structure predictions, we identify four stable phases of a helium-silica compound with seven/eight-coordinated silicon atoms at pressure range of 600-4000 GPa, corresponding to the interior condition of the outer planets in the solar system. The density of HeSiO2 agrees with current structure models of the planets. This helium-silica compound exhibits a superionic-like helium diffusive state at the high pressure and high temperature conditions along the isentropes of Saturn, a metallic fluid state in Jupiter, and a solid state in the deep interiors of Uranus and Neptune. The reaction of helium and silica may lead to the erosion of the rocky core of giant planets and form a diluted core region. These results highlight the reactivity of helium under high pressure to form new compounds, and also provides evidence to help build more sophisticated interior models of giant planets.



قيم البحث

اقرأ أيضاً

141 - Hao Gao , Cong Liu , Jiuyang Shi 2021
Silica, water and hydrogen are known to be the major components of celestial bodies, and have significant influence on the formation and evolution of giant planets, such as Uranus and Neptune. Thus, it is of fundamental importance to investigate thei r states and possible reactions under the planetary conditions. Here, using advanced crystal structure searches and first-principles calculations in the Si-O-H system, we find that a silica-water compound (SiO2)2(H2O) and a silica-hydrogen compound SiO2H2 can exist under high pressures above 450 and 650 GPa, respectively. Further simulations reveal that, at high pressure and high temperature conditions corresponding to the interiors of Uranus and Neptune, these compounds exhibit superionic behavior, in which protons diffuse freely like liquid while the silicon and oxygen framework is fixed as solid. Therefore, these superionic silica-water and silica-hydrogen compounds could be regarded as important components of the deep mantle or core of giants, which also provides an alternative origin for their anomalous magnetic fields. These unexpected physical and chemical properties of the most common natural materials at high pressure offer key clues to understand some abstruse issues including demixing and erosion of the core in giant planets, and shed light on building reliable models for solar giants and exoplanets.
Changes in atomic coordination numbers at high pressures are fundamental to condensed-matter physics because they initiate the emergence of unexpected structures and phenomena. Silicon is capable of forming eight-, nine-, and ten-coordinated structur es under compression,in addition to the usual six-coordinated structures. The missing seven-coordinated silicon remains an open question, but here our theoretical study provides evidence for its existence at high pressures. A combination of a crystal-structure prediction method and first-principles calculations allowed prediction of a stable SiO2He compound containing unique SiO7 polyhedrons, which is a configuration unknown in any proposed silica phase. Consequently, seven-coordinated SiO7 is a possible form of silica at high pressures. Further calculations indicate that the SiO2He phase remains energetically stable with a solid character over a wide range of pressures exceeding 607 GPa and temperatures of 0-9000 K, covering the extreme conditions of the core-mantle boundary in super-Earth exoplanets, or even the Solar Systems ice giant planets. Our results may provide theoretical guidance for the discovery of other silicides at high pressures, promote the exploration of materials at planetary core-mantle boundaries, and enable planetary models to be refined.
The sun and giant planets are generally thought to have the same helium abundance as that in the solar nebula from which they were formed 4.6 billion years ago. In contrast, the interstellar medium reflects current galactic conditions. The departure of current abundances from the primordial and protosolar values may help trace the processes that drive the nucleosynthesis evolution of the galaxy and planetary interior formation and evolution. The Galileo probe measured the He abundance in situ the atmosphere of Jupiter, showing that He is only slightly depleted compared to the solar value. For Saturn, contradictory estimates from past Voyager observations make its He abundance very uncertain. Here, we use He 58.4 nm dayglow measured from the outer planets by the Voyager ultraviolet spectrometers to derive the He abundance in the atmosphere of Jupiter and Saturn. We also use the solar He 58.4 nm line measured by the Solar Heliospheric Observatory to derive the He abundance inside the focusing cone. Finally, we compare He abundances derived here with primordial and protosolar values, stressing the unique opportunity offered by inner heliosphere observations and future Voyager in situ local interstellar medium measurements to derive the He abundance in the very interstellar cloud in which we reside.
We present thermodynamic material and transport properties for the extreme conditions prevalent in the interiors of massive giant planets and brown dwarfs. They are obtained from extensive textit{ab initio} simulations of hydrogen-helium mixtures alo ng the isentropes of three representative objects. In particular, we determine the heat capacities, the thermal expansion coefficient, the isothermal compressibility, and the sound velocity. Important transport properties such as the electrical and thermal conductivity, opacity, and shear viscosity are also calculated. Further results for associated quantities including magnetic and thermal diffusivity, kinematic shear viscosity, as well as the static Love number $k_2$ and the equidistance are presented. In comparison to Jupiter-mass planets, the behavior inside massive giant planets and brown dwarfs is stronger dominated by degenerate matter. We discuss the implications on possible dynamics and magnetic fields of those massive objects. The consistent data set compiled here may serve as starting point to obtain material and transport properties for other substellar H-He objects with masses above one Jovian mass and finally may be used as input for dynamo simulations.
Around 2% of all A stars have photospheres depleted in refractory elements. This is hypothesized to arise from a preferential accretion of gas rather than dust, but the specific processes and the origin of the material -- circum- or interstellar -- a re not known. The same depletion is seen in 30% of young, disk-hosting Herbig Ae/Be stars. We investigate whether the chemical peculiarity originates in a circumstellar disk. Using a sample of systems for which both the stellar abundances and the protoplanetary disk structure are known, we find that stars hosting warm, flaring group I disks typically have Fe, Mg and Si depletions of 0.5 dex compared to the solar-like abundances of stars hosting cold, flat group II disks. The volatile, C and O, abundances in both sets are identical. Group I disks are generally transitional, having radial cavities depleted in millimetre-sized dust grains, while those of group II are usually not. Thus we propose that the depletion of heavy elements emerges as Jupiter-like planets block the accretion of part of the dust, while gas continues to flow towards the central star. We calculate gas to dust ratios for the accreted material and find values consistent with models of disk clearing by planets. Our results suggest that giant planets of ~0.1 to 10 M_Jup are hiding in at least 30% of Herbig Ae/Be disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا