ﻻ يوجد ملخص باللغة العربية
Given strong uniqueness for an It^os stochastic equation, we prove that its solution can beconstructed on any probability space by using, for example, Eulers polygonal approximations. Stochastic equations in $mathbb{R}^{d}$ and in domains in $mathbb{R}^{d}$ are considered. This is almost a copy of an old article in which we correct errors in the original proof of Lemma 4.1 found by Martin Dieckmann in 2013. We present also a new result on the convergence of tamed Euler approximations for SDEs with locally unbounded drifts, which we achieve by proving an estimate for appropriate exponential moments.
We consider It^o uniformly nondegenerate equations with time independent coefficients, the diffusion coefficient in $W^{1}_{d,loc}$, and the drift in $L_{d}$. We prove the unique strong solvability for any starting point and prove that as a function
We propose to study a new type of Backward stochastic differential equations driven by a family of It^os processes. We prove existence and uniqueness of the solution, and investigate stability and comparison theorem.
A peculiar feature of It^os calculus is that it is an integral calculus that gives no explicit derivative with a systematic differentiation theory counterpart, as in elementary calculus. So, can we define a pathwise stochastic derivative of semimarti
We prove It^os formula for the $L_{p}$-norm of a stochastic $W^{1}_{p}$-valued processes appearing in the theory of SPDEs in divergence form.
This paper establishes It^os formula along a flow of probability measures associated with gene-ral semimartingales. This generalizes existing results for flow of measures on It^o processes. Our approach is to first prove It^os formula for cylindrical