ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for neutrino non-standard interactions with ANTARES and KM3NeT-ORCA

79   0   0.0 ( 0 )
 نشر من قبل Nafis Rezwan Khan Chowdhury
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-standard interactions (NSIs) in the propagation of neutrinos in matter can lead to significant deviations in neutrino oscillations expected within the standard 3-neutrino framework. These additional interactions would result in an anomalous flux of neutrinos observable at neutrino telescopes. The ANTARES detector and its next-generation successor, KM3NeT, located in the abyss of the Mediterranean Sea, have the potential to measure sub-dominant effects in neutrino oscillations, coming from non-standard neutrino interactions. In this contribution, a likelihood-based search for NSIs with 10 years of atmospheric muon-neutrino data recorded with ANTARES is reported and sensitivity projections for KM3NeT/ORCA, based on realistic detector simulations, are shown. The bounds obtained with ANTARES in the NSI $mu - tau$ sector constitute the most stringent limits up to date.

قيم البحث

اقرأ أيضاً

This article presents the potential of a combined analysis of the JUNO and KM3NeT/ORCA experiments to determine the neutrino mass ordering. This combination is particularly interesting as it significantly boosts the potential of either detector, beyo nd simply adding their neutrino mass ordering sensitivities, by removing a degeneracy in the determination of $Delta m_{31}^2$ between the two experiments when assuming the wrong ordering. The study is based on the latest projected performances for JUNO, and on simulation tools using a full Monte Carlo approach to the KM3NeT/ORCA response with a careful assessment of its energy systematics. From this analysis, a $5sigma$ determination of the neutrino mass ordering is expected after 6 years of joint data taking for any value of the oscillation parameters. This sensitivity would be achieved after only 2 years of joint data taking assuming the current global best-fit values for those parameters for normal ordering.
Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile n eutrino and, depending on the model, a scalar or a Majoron. We study the sensitivity of the forthcoming KM3NeT-ORCA experiment to this scenario and find that it could improve the current bounds coming from oscillation experiments, where three-neutrino oscillations have been considered, by roughly two orders of magnitude. We also study how the presence of this neutrino decay can affect the determination of the atmospheric oscillation parameters $sin^2theta_{23}$ and $Delta m_{31}^2$, as well as the sensitivity to the neutrino mass ordering.
The KM3NeT/ORCA sensitivity to atmospheric neutrino oscillation is presented. The event reconstruction, selection and classification are described. The sensitivity to determine the neutrino mass ordering was evaluated and found to be 4.4 $sigma$ if t he true ordering is normal and 2.3 $sigma$ if inverted, after three years of data taking. The precision to measure $Delta m^2_{32}$ and $theta_{23}$ were also estimated and found to be $85cdot10^{-6}$ eV$^2$ and $(^{+1.9}_{-3.1})^{circ}$ for normal neutrino mass ordering and, $75cdot10^{-6}$ eV$^2$ and $(^{+2.0}_{-7.0})^{circ}$ for inverted ordering. Finally, a unitarity test of the leptonic mixing matrix by measuring the rate of tau neutrinos is described. Three years of data taking were found to be sufficient to exclude $ u_{tau}$ and $bar{ u}_{tau}$ event rate variations larger than 20% at 3$sigma$ level.
KM3NeT/ORCA is a next-generation neutrino telescope optimised for atmospheric neutrino oscillations studies. In this paper, the sensitivity of ORCA to the presence of a light sterile neutrino in a 3+1 model is presented. After three years of data tak ing, ORCA will be able to probe the active-sterile mixing angles $theta_{14}$, $theta_{24}$, $theta_{34}$ and the effective angle $theta_{mu e}$, over a broad range of mass squared difference $Delta m^2_{41} sim [10^{-5}, 10]$ $rm{eV}^2$, allowing to test the eV-mass sterile neutrino hypothesis as the origin of short baseline anomalies, as well as probing the hypothesis of a very light sterile neutrino, not yet constrained by cosmology. ORCA will be able to explore a relevant fraction of the parameter space not yet reached by present measurements.
129 - O. G. Miranda , H. Nunokawa 2015
Neutrino oscillations have become well-known phenomenon; the measurements of neutrino mixing angles and mass squared differences are continuously improving. Future oscillation experiments will eventually determine the remaining unknown neutrino param eters, namely, the mass ordering, normal or inverted, and the CP-violating phase. On the other hand, the absolute mass scale of neutrinos could be probed by cosmological observations, single beta decay as well as by neutrinoless double beta decay experiments. Furthermore, the last one may shed light on the nature of neutrinos, Dirac or Majorana, by measuring the effective Majorana mass of neutrinos. However, the neutrino mass generation mechanism remains unknown. A well-motivated phenomenological approach to search for new physics, in the neutrino sector, is that of non-standard interactions. In this short review, the current constraints in this picture, as well as the perspectives from future experiments, are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا