ﻻ يوجد ملخص باللغة العربية
Growth of the black holes (BHs) from the seeds to supermassive BHs (SMBHs, $sim!10^9,M_odot$) is not understood, but the mass accretion must have played an important role. We performed two-dimensional radiation hydrodynamics simulations of line-driven disc winds considering the metallicity dependence in a wide range of the BH mass, and investigated the reduction of the mass accretion rate due to the wind mass loss. Our results show that denser and faster disc winds appear at higher metallicities and larger BH masses. The accretion rate is suppressed to $sim! 0.4$--$0.6$ times the mass supply rate to the disc for the BH mass of $M_{rm BH}gtrsim 10^5,M_{odot}$ in high-metallicity environments of $Zgtrsim Z_odot$, while the wind mass loss is negligible when the metallicity is sub-solar ($sim 0.1Z_odot$). By developing a semi-analytical model, we found that the metallicity dependence of the line force and the BH mass dependence of the surface area of the wind launch region are the cause of the metallicity dependence ($propto! Z^{2/3}$) and BH mass dependencies ($propto! M_{rm BH}^{4/3}$ for $M_{rm BH}leq 10^6,M_odot$ and $propto! M_{rm BH}$ for $M_{rm BH}geq 10^6,M_odot$) of the mass-loss rate. Our model suggests that the growth of BHs by the gas accretion effectively slows down in the regime $gtrsim 10^{5}M_odot$ in metal-enriched environments $gtrsim Z_odot$. This means that the line-driven disc winds may have an impact on late evolution of SMBHs.
Recent observations and simulations have revealed the dominance of secular processes over mergers in driving the growth of both supermassive black holes (SMBH) and galaxy evolution. Here we obtain narrowband imaging of AGN powered outflows in a sampl
We investigate black hole-host galaxy scaling relations in cosmological simulations with a self-consistent black hole growth and feedback model. The sub-grid accretion model captures the key scalings governing angular momentum transport from galactic
We study line driven winds for models with different radial intensity profiles: standard Shakura-Sunyaev radiating thin discs, uniform intensity discs and truncated discs where driving radiation is cutoff at some radius. We find that global outflow p
We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the Athena++ code and develop a new module to account for radiation pressure driving. In 2D, our new simul
Radiative pressure exerted by line interactions is a prominent driver of outflows in astrophysical systems, being at work in the outflows emerging from hot stars or from the accretion discs of cataclysmic variables, massive young stars and active gal