ﻻ يوجد ملخص باللغة العربية
Gravitational-wave detections are enabling measurements of the rate of coalescences of binaries composed of two compact objects - neutron stars and/or black holes. The coalescence rate of binaries containing neutron stars is further constrained by electromagnetic observations, including Galactic radio binary pulsars and short gamma-ray bursts. Meanwhile, increasingly sophisticated models of compact objects merging through a variety of evolutionary channels produce a range of theoretically predicted rates. Rapid improvements in instrument sensitivity, along with plans for new and improved surveys, make this an opportune time to summarise the existing observational and theoretical knowledge of compact-binary coalescence rates.
We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the Initial and Advance
We estimate binary compact object merger detection rates for LIGO, including the binaries formed in ellipticals long ago. Specifically, we convolve hundreds of model realizations of elliptical- and spiral-galaxy population syntheses with a model for
The detection of gravitational waves from a neutron star merger, GW170817, marked the dawn of a new era in time-domain astronomy. Monitoring of the radio emission produced by the merger, including high-resolution radio imaging, enabled measurements o
The direct detection of gravitational waves (GWs) opened a new chapter in the modern cosmology to probe possible deviations from the general relativity (GR) theory. In the present work, we investigate for the first time the modified GW form propagati
We investigate the merging rates of compact binaries in galaxies, and the related detection rate of gravitational wave (GW) events with AdvLIGO/Virgo and with the Einstein Telescope. To this purpose, we rely on three basic ingredients: (i) the redshi