ﻻ يوجد ملخص باللغة العربية
This paper investigates the secrecy capacity region of multiple access wiretap (MAC-WT) channels where, besides confidential messages, the users have also open messages to transmit. All these messages are intended for the legitimate receiver (or Bob for brevity) but only the confidential messages need to be protected from the eavesdropper (Eve). We first consider a discrete memoryless (DM) MAC-WT channel where both Bob and Eve jointly decode their interested messages. By using random coding, we find an achievable rate region, within which perfect secrecy can be realized, i.e., all users can communicate with Bob with arbitrarily small probability of error, while the confidential information leaked to Eve tends to zero. Due to the high implementation complexity of joint decoding, we also consider the DM MAC-WT channel where Bob simply decodes messages independently while Eve still applies joint decoding. We then extend the results in the DM case to a Gaussian vector (GV) MAC-WT channel. Based on the information theoretic results, we further maximize the sum secrecy rate of the GV MAC-WT system by designing precoders for all users. Since the problems are non-convex, we provide iterative algorithms to obtain suboptimal solutions. Simulation results show that compared with existing schemes, secure communication can be greatly enhanced by the proposed algorithms, and in contrast to the works which only focus on the network secrecy performance, the system spectrum efficiency can be effectively improved since open messages can be simultaneously transmitted.
This paper considers the problem of secret communication over a multiple access channel with generalized feedback. Two trusted users send independent confidential messages to an intended receiver, in the presence of a passive eavesdropper. In this se
The fading cognitive multiple-access channel with confidential messages (CMAC-CM) is investigated, in which two users attempt to transmit common information to a destination and user 1 also has confidential information intended for the destination. U
In this paper, we study the problem of secret communication over a Compound Multiple Access Channel (MAC). In this channel, we assume that one of the transmitted messages is confidential that is only decoded by its corresponding receiver and kept sec
We consider a discrete memoryless broadcast channel consists of two users and a sender. The sender has two independent confidential messages for each user. We extend the work of Liu et al. on broadcast channels with two confidential messages with wea
This paper considers the problem of secret communication over a two-receiver multiple-input multiple-output (MIMO) Gaussian broadcast channel. The transmitter has two independent messages, each of which is intended for one of the receivers but needs