ﻻ يوجد ملخص باللغة العربية
In this paper, we study a non-canonical extension of a supergravity-motivated model acting as a vivid counterexample to the cosmic no-hair conjecture due to its unusual coupling between scalar and electromagnetic fields. In particular, a canonical scalar field is replaced by the string-inspired Dirac-Born-Infeld one in this extension. As a result, exact anisotropic inflationary solutions for this Dirac-Born-Infeld model are figured out under a constant-roll condition. Furthermore, numerical calculations are performed to verify that these anisotropic constant-roll solutions are indeed attractive during their inflationary phase.
The primordial power spectra of scalar and tensor perturbations during slow-roll inflation are usually calculated with the method of Bessel function approximation. For constant-roll or ultra slow-roll inflation, the method of Bessel function approxim
We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation
We discuss the constant-roll inflation with constant $epsilon_2$ and constant $bareta$. By using the method of Bessel function approximation, the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts, an
We investigate the scalar and tensor spectral indices of the quadratic inflation model in Eddington-inspired Born-Infeld (EiBI) gravity. We find that the EiBI corrections to the spectral indices are of second and first order in the slow-roll approxim
For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio up to the first order by using the method of Bessel function ap