ﻻ يوجد ملخص باللغة العربية
Multiple optical scattering occurs when light propagates in a non-uniform medium. During the multiple scattering, images were distorted and the spatial information they carried became scrambled. However, the image information is not lost but presents in the form of speckle patterns (SPs). In this study, we built up an optical random scattering system based on an LCD and an RGB laser source. We found that the image classification can be improved by the help of random scattering which is considered as a feedforward neural network to extracts features from image. Along with the ridge classification deployed on computer, we achieved excellent classification accuracy higher than 94%, for a variety of data sets covering medical, agricultural, environmental protection and other fields. In addition, the proposed optical scattering system has the advantages of high speed, low power consumption, and miniaturization, which is suitable for deploying in edge computing applications.
Deep learning methods have played a more and more important role in hyperspectral image classification. However, the general deep learning methods mainly take advantage of the information of sample itself or the pairwise information between samples w
Ill-posed inverse problems appear in many image processing applications, such as deblurring and super-resolution. In recent years, solutions that are based on deep Convolutional Neural Networks (CNNs) have shown great promise. Yet, most of these tech
Deep neural networks are vulnerable to adversarial attacks. White-box adversarial attacks can fool neural networks with small adversarial perturbations, especially for large size images. However, keeping successful adversarial perturbations impercept
Image retargeting is a new image processing task that renders the change of aspect ratio in images. One of the most famous image-retargeting algorithms is seam-carving. Although seam-carving is fast and straightforward, it usually distorts the images
In remote sensing, hyperspectral (HS) and multispectral (MS) image fusion have emerged as a synthesis tool to improve the data set resolution. However, conventional image fusion methods typically degrade the performance of the land cover classificati