ﻻ يوجد ملخص باللغة العربية
We extend finite-temperature tensor network methods to compute Matsubara imaginary-time correlation functions, building on the minimally entangled typical thermal states (METTS) and purification algorithms. While imaginary-time correlation functions are straightforward to formulate with these methods, care is needed to avoid convergence issues that would result from naive estimators. As a benchmark, we study the single-band Anderson impurity model, even though the algorithm is quite general and applies to lattice models. The special structure of the impurity model benchmark system and our choice of basis enable techniques such as reuse of high-probability METTS for increasing algorithm efficiency. The results are competitive with state-of-the-art continuous time Monte Carlo. We discuss the behavior of computation time and error as a function of the number of purified sites in the Hamiltonian.
The minimally entangled typical thermal states algorithm is applied to fermionic systems using the Krylov-space approach to evolve the system in imaginary time. The convergence of local observables is studied in a tight-binding system with a site-dep
We improve the efficiency of the minimally entangled typical thermal states (METTS) algorithm without breaking the Abelian symmetries. By adding the operation of Trotter gates that respects the Abelian symmetries to the METTS algorithm, we find that
Based on the scheme of variational Monte Carlo sampling, we develop an accurate and efficient two-dimensional tensor-network algorithm to simulate quantum lattice models. We find that Monte Carlo sampling shows huge advantages in dealing with finite
We analyze a criterion which guarantees that the ground states of certain many body systems are stable under perturbations. Specifically, we consider PEPS, which are believed to provide an efficient description, based on local tensors, for the low en
While general quantum many-body systems require exponential resources to be simulated on a classical computer, systems of non-interacting fermions can be simulated exactly using polynomially scaling resources. Such systems may be of interest in their