ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral signature of mass outflow in Two Component Advective Flow Paradigm

129   0   0.0 ( 0 )
 نشر من قبل Santanu Mondal
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Outflows are common in many astrophysical systems. In the Two Component Advective Flow ({fontfamily{qcr}selectfont TCAF}) paradigm which is essentially a generalized Bondi flow including rotation, viscosity and cooling effects, the outflow is originated from the hot, puffed up, post-shock region at the inner edge of the accretion disk. We consider this region to be the base of the jet carrying away matter with high velocity. In this paper, we study the spectral properties of black holes using {fontfamily{qcr}selectfont TCAF} which includes also a jet ({fontfamily{qcr}selectfont JeTCAF}) in the vertical direction of the disk plane. Soft photons from the Keplerian disk are up-scattered by the post-shock region as well as by the base of the jet and are emitted as hard radiation. We also include the bulk motion Comptonization effect by the diverging flow of jet. Our self-consistent accretion-ejection solution shows how the spectrum from the base of the jet varies with accretion rates, geometry of the flow and the collimation factor of the jet. We apply the solution to a jetted candidate GS,1354-64 to estimate its mass outflow rate and the geometric configuration of the flow during 2015 outburst using {it NuSTAR} observation. The estimated mass outflow to mass inflow rate is $0.12^{+0.02}_{-0.03}$. From the model fitted accretion rates, shock compression ratio and the energy spectral index, we identify the presence of hard and intermediate spectral states of the outburst. Our model fitted jet collimation factor ($f_{rm col}$) is found to be $0.47^{+0.09}_{-0.09}$.



قيم البحث

اقرأ أيضاً

We study the spectral and timing properties of a two component advective flow (TCAF) around a black hole by numerical simulation. Several cases have been simulated by varying the Keplerian disk rate and the resulting spectra and lightcurves have been produced for all the cases. The dependence of the spectral states and quasi-periodic oscillation (QPO) frequencies on the flow parameters is discussed. We also find the earlier explanation of arising of QPOs as the resonance between infall time scale and cooling time scale remain valid even for Compton cooling.
We study several Galactic black hole candidates using long-time RXTE/ASM X-ray data to search for telltale signatures of differences in viscous timescales in the two components used in the Two-Component Advective Flow (TCAF) paradigm. In high-mass X- ray binaries (HMXBs) mainly winds are accreted. This nearly inviscid and dominant sub-Keplerian flow falls almost freely towards the black hole. A standard Keplerian disc can form out of this sub-Keplerian matter in presence of a significant viscosity and could be small in size. However, in low-mass X-ray binaries (LMXBs), highly viscous and larger Keplerian accretion disc is expected to form inside the sub-Keplerian disc due to the Roche-lobe overflow. Due to two viscous timescales in these two components, it is expected to have a larger lag between the times-of-arrival of these components in LMXBs than that in HMXBs. Direct cross-correlation between the photon fluxes will not reveal this lag/delay since they lack linear dependence; however, they are coupled through the viscous processes which bring in both matter. To quantify the aforesaid time lag, we introduce an index ({Theta}), which is a proxy of the usual photon index ({Gamma}). Thus, when {Theta}, being dynamically responsive to both fluxes, is considered as a reference, the arrival time lag between the two fluxes in LMXBs is found to be much larger than that in HMXBs. Our result establishes the presence of two dynamical components in accretion and shows that the Keplerian disc size indeed is smaller in HMXBs as compared to that in LMXBs.
The fundamental difference between accretion around black holes and neutron stars is the inner boundary condition, which affects the behavior of matter very close to the compact objects. This leads to formation of additional shocks and boundary layer s for neutron stars. Previous studies on the formation of such boundary layers focused on Keplerian flows that reached the surface of the star, either directly or through the formation of a transition layer. However, behavior of sub-Keplerian matter near the surface of a neutron star has not been studied in detail. Here, we study the effect of viscosity, in presence of cooling, on the sub-Keplerian flows around neutron stars, using Smoothed Particle Hydrodynamics. Our time-dependent study shows that multiple shocks, transition and boundary layers form in such type of accretion, when viscosity is significant, and one or more layers are absent when the viscosity is moderate. These flows are particularly of interest for the wind dominated systems such as Cir X-1. We also report the formation of a generalized flow configuration, Two-Component Advective Flow, for the first time.
A black hole accretion may have both the Keplerian and the sub-Keplerian component. In the so-called Chakrabarti-Titarchuk scenario, the Keplerian component supplies low energy (soft) photons while the sub-Keplerian component supplies hot electrons w hich exchange their energy with the soft photons through Comptonization or inverse Comptonization processes. In the sub-Keplerian component, a shock is generally produced due to the centrifugal force. The postshock region is known as the CENtrifugal pressure-supported BOundary Layer (CENBOL). In this paper, we compute the effects of the thermal and the bulk motion Comptonization on the soft photons emitted from a Keplerian disk by the CENBOL, the preshock sub-Keplerian disk and the outflowing jet. We study the emerging spectrum when the converging inflow and the diverging outflow (generated from the CENBOL) are simultaneously present. From the strength of the shock, we calculate the percentage of matter being carried away by the outflow and determine how the emerging spectrum depends on the outflow rate. The preshock sub-Keplerian flow is also found to Comptonize the soft photons significantly. The interplay between the up-scattering and down-scattering effects determines the effective shape of the emerging spectrum. By simulating several cases with various inflow parameters, we conclude that whether the preshock flow, or the postshock CENBOL or the emerging jet is dominant in shaping the emerging spectrum depends strongly on the geometry of the flow and the strength of the shock in the sub-Keplerian flow.
High-energy emission of extragalactic objects is known to take place in relativistic jets, but the nature, the location, and the emission processes of the emitting particles are still unknown. One of the models proposed to explain the formation of re lativistic ejections and their associated non-thermal emission is the two-flow model, where the jets are supposed to be composed of two different flows, a mildly relativistic baryonic jet surrounding a fast, relativistically moving electron-positron plasma. Here we present the simulation of the emission of such a structure taking into account the main sources of photons that are present in active galactic nuclei (AGNs). We reproduce the broadband spectra of radio-loud AGNs with a detailed model of emission taking into account synchrotron and inverse-Compton emission by a relativistically moving beam of electron-positron, heated by a surrounding turbulent baryonic jet. We compute the density and energy distribution of a relativistic pair plasma all along a jet, taking into account the synchrotron and inverse-Compton process on the various photon sources present in the core of the AGN, as well as the pair creation and annihilation processes. We use semi-analytical approximations to quickly compute the inverse-Compton process on a thermal photon distribution with any anisotropic angular distribution. The anisotropy of the photon field is also responsible for the bulk acceleration of the pair plasma through the Compton rocket effect, thus imposing the plasma velocity along the jet. As an example, the simulated emerging spectrum is compared to the broadband emission of 3C273. In the case of 3C273, we obtain an excellent fit of the average broadband energy distribution by assuming physical parameters compatible with known estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا