ترغب بنشر مسار تعليمي؟ اضغط هنا

Wave emission of non-thermal electron beams generated by magnetic reconnection

165   0   0.0 ( 0 )
 نشر من قبل Xin Yao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic reconnection in solar flares can efficiently generate non-thermal electron beams. The accelerated electrons can, in turn, cause radio waves through kinetic instabilities as they propagate through the ambient plasma. We aim at investigating the wave emission caused by fast electron beams (FEBs) with characteristic non-thermal electron velocity distribution functions (EVDFs) generated by kinetic magnetic reconnection: bump-on-tail EVDFs along the separatrices and in the diffusion region, and perpendicular crescent-shaped EVDFs close to the diffusion region. For this sake we utilized 2.5D fully kinetic Particle-In-Cell (PIC) code simulations in this study. We found that: (1) the bump-on-tail EVDFs are unstable to cause electrostatic Langmuir waves via bump-on-tail instabilities and then multiple harmonic transverse waves from the diffusion region and the separatrices of reconnection. (2) The perpendicular crescent-shaped EVDFs, on the other hand, can cause multi-harmonic electromagnetic electron cyclotron waves through electron cyclotron maser instabilities in diffusion region of reconnection. Our results are applicable to diagnose the plasma parameters which control reconnection in solar flares by means of radio waves observations.



قيم البحث

اقرأ أيضاً

Solar electron beams responsible for type III radio emission generate Langmuir waves as they propagate out from the Sun. The Langmuir waves are observed via in-situ electric field measurements. These Langmuir waves are not smoothly distributed but oc cur in discrete clumps, commonly attributed to the turbulent nature of the solar wind electron density. Exactly how the density turbulence modulates the Langmuir wave electric fields is understood only qualitatively. Using weak turbulence simulations, we investigate how solar wind density turbulence changes the probability distribution functions, mean value and variance of the beam-driven electric field distributions. Simulations show rather complicated forms of the distribution that are dependent upon how the electric fields are sampled. Generally the higher magnitude of density fluctuations reduce the mean and increase the variance of the distribution in a consistent manor to the predictions from resonance broadening by density fluctuations. We also demonstrate how the properties of the electric field distribution should vary radially from the Sun to the Earth and provide a numerical prediction for the in-situ measurements of the upcoming Solar Orbiter and Solar Probe Plus spacecraft.
Particle dynamics in the electron current layer in collisionless magnetic reconnection is investigated by using a particle-in-cell simulation. Electron motion and velocity distribution functions are studied by tracking self-consistent trajectories. N ew classes of electron orbits are discovered: figure-eight-shaped regular orbits inside the electron jet, noncrossing regular orbits on the jet flanks, noncrossing Speiser orbits, and nongyrotropic electrons in the downstream of the jet termination region. Properties of a super-Alfv{e}nic outflow jet are attributed to an ensemble of electrons traveling through Speiser orbits. Noncrossing orbits are mediated by the polarization electric field near the electron current layer. The noncrossing electrons are found to be non-negligible in number density. The impact of these new orbits to electron mixing, spatial distribution of energetic electrons, and observational signatures, is presented.
The acceleration of charged particles in magnetized plasmas is considered during turbulent multi-island magnetic reconnection. The particle acceleration model is constructed for an ensemble of islands which produce adiabatic compression of the partic les. The model takes into account the statistical fluctuations in the compression rate experienced by the particles during their transport in the acceleration region. The evolution of the particle distribution function is described as a simultaneous first and second-order Fermi acceleration process. While the efficiency of the first-order process is controlled by the average rate of compression, the second order process involves the variance in the compression rate. Moreover, the acceleration efficiency associated with the second-order process involves both the Eulerian properties of the compression field and the Lagrangian properties of the particles. The stochastic contribution to the acceleration is non-resonant and can dominate the systematic part in the case of a large variance in the compression rate. The model addresses the role of the second-order process, how the latter can be related to the large-scale turbulent transport of particles and explains some features of the numerical simulations of particle acceleration by multi-island contraction during magnetic reconnection.
Hot collisionless accretion flows, such as the one in Sgr A$^{*}$ at our Galactic center, provide a unique setting for the investigation of magnetic reconnection. Here, protons are non-relativistic while electrons can be ultra-relativistic. By means of two-dimensional particle-in-cell simulations, we investigate electron and proton heating in the outflows of trans-relativistic reconnection (i.e., $sigma_wsim 0.1-1$, where the magnetization $sigma_w$ is the ratio of magnetic energy density to enthalpy density). For both electrons and protons, we find that heating at high $beta_{rm i}$ (here, $beta_{rm i}$ is the ratio of proton thermal pressure to magnetic pressure) is dominated by adiabatic compression (adiabatic heating), while at low $beta_{rm i}$ it is accompanied by a genuine increase in entropy (irreversible heating). For our fiducial $sigma_w=0.1$, the irreversible heating efficiency at $beta_{rm i}lesssim 1$ is nearly independent of the electron-to-proton temperature ratio $T_{rm e}/T_{rm i}$ (which we vary from $0.1$ up to $1$), and it asymptotes to $sim 2%$ of the inflowing magnetic energy in the low-$beta_{rm i}$ limit. Protons are heated more efficiently than electrons at low and moderate $beta_{rm i}$ (by a factor of $sim7$), whereas the electron and proton heating efficiencies become comparable at $beta_{rm i}sim 2$ if $T_{rm e}/T_{rm i}=1$, when both species start already relativistically hot. We find comparable heating efficiencies between the two species also in the limit of relativistic reconnection ($sigma_wgtrsim 1$). Our results have important implications for the two-temperature nature of collisionless accretion flows, and may provide the sub-grid physics needed in general relativistic MHD simulations.
The process of magnetic reconnection when studied in Nature or when modeled in 3D simulations differs in one key way from the standard 2D paradigmatic cartoon: it is accompanied by much fluctuations in the electromagnetic fields and plasma properties . We developed a diagnostics to study the spectrum of fluctuations in the various regions around a reconnection site. We define the regions in terms of the local value of the flux function that determines the distance form the reconnection site, with positive values in the outflow and negative values in the inflow. We find that fluctuations belong to two very different regimes depending on the local plasma beta (defined as the ratio of plasma and magnetic pressure). The first regime develops in the reconnection outflows where beta is high and is characterized by a strong link between plasma and electromagnetic fluctuations leading to momentum and energy exchanges via anomalous viscosity and resistivity. But there is a second, low beta regime: it develops in the inflow and in the region around the separatrix surfaces, including the reconnection electron diffusion region itself. It is remarkable that this low beta plasma, where the magnetic pressure dominates, remain laminar even though the electromagnetic fields are turbulent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا