ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlling epidemics through optimal allocation of test kits and vaccine doses across networks

59   0   0.0 ( 0 )
 نشر من قبل Tom Chou
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Efficient testing and vaccination protocols are critical aspects of epidemic management. To study the optimal allocation of limited testing and vaccination resources in a heterogeneous contact network of interacting susceptible, recovered, and infected individuals, we present a degree-based testing and vaccination model for which we use control-theoretic methods to derive optimal testing and vaccination policies. Within our framework, we find that optimal intervention policies first target high-degree nodes before shifting to lower-degree nodes in a time-dependent manner. Using such optimal policies, it is possible to delay outbreaks and reduce incidence rates to a greater extent than uniform and reinforcement-learning-based interventions, particularly on certain scale-free networks.



قيم البحث

اقرأ أيضاً

Understanding how to effectively control an epidemic spreading on a network is a problem of paramount importance for the scientific community. The ongoing COVID-19 pandemic has highlighted the need for policies that mitigate the spread, without relyi ng on pharmaceutical interventions, that is, without the medical assurance of the recovery process. These policies typically entail lockdowns and mobility restrictions, having thus nonnegligible socio-economic consequences for the population. In this paper, we focus on the problem of finding the optimum policies that flatten the epidemic curve while limiting the negative consequences for the society, and formulate it as a nonlinear control problem over a finite prediction horizon. We utilize the model predictive control theory to design a strategy to effectively control the disease, balancing safety and normalcy. An explicit formalization of the control scheme is provided for the susceptible--infected--susceptible epidemic model over a network. Its performance and flexibility are demonstrated by means of numerical simulations.
With the increasing spread of COVID-19, it is important to systematically test more and more people. The current strategy for test-kit allocation is mostly rule-based, focusing on individuals having (a) symptoms for COVID-19, (b) travel history or (c ) contact history with confirmed COVID-19 patients. Such testing strategy may miss out on detecting asymptomatic individuals who got infected via community spread. Thus, it is important to allocate a separate budget of test-kits per day targeted towards preventing community spread and detecting new cases early on. In this report, we consider the problem of allocating test-kits and discuss some solution approaches. We believe that these approaches will be useful to contain community spread and detect new cases early on. Additionally, these approaches would help in collecting unbiased data which can then be used to improve the accuracy of machine learning models trained to predict COVID-19 infections.
When effective medical treatment and vaccination are not available, non-pharmaceutical interventions such as social distancing, home quarantine and far-reaching shutdown of public life are the only available strategies to prevent the spread of epidem ics. Based on an extended SEIR (susceptible-exposed-infectious-recovered) model and continuous-time optimal control theory, we compute the optimal non-pharmaceutical intervention strategy for the case that a vaccine is never found and complete containment (eradication of the epidemic) is impossible. In this case, the optimal control must meet competing requirements: First, the minimization of disease-related deaths, and, second, the establishment of a sufficient degree of natural immunity at the end of the measures, in order to exclude a second wave. Moreover, the socio-economic costs of the intervention shall be kept at a minimum. The numerically computed optimal control strategy is a single-intervention scenario that goes beyond heuristically motivated interventions and simple flattening of the curve. Careful analysis of the computed control strategy reveals, however, that the obtained solution is in fact a tightrope walk close to the stability boundary of the system, where socio-economic costs and the risk of a new outbreak must be constantly balanced against one another. The model system is calibrated to reproduce the initial exponential growth phase of the COVID-19 pandemic in Germany.
How to strategically allocate the available vaccines is a crucial issue for pandemic control. In this work, we propose a mathematical framework for optimal stabilizing vaccine allocation, where our goal is to send the infections to zero as soon as po ssible with a fixed number of vaccine doses. This framework allows us to efficiently compute the optimal vaccine allocation policy for general epidemic spread models including SIS/SIR/SEIR and a new model of COVID-19 transmissions. By fitting the real data in New York State to our framework, we found that the optimal stabilizing vaccine allocation policy suggests offering vaccines priority to locations where there are more susceptible people and where the residents spend longer time outside the home. Besides, we found that offering vaccines priority to young adults (20-29) and middle-age adults (20-44) can minimize the cumulative infected cases and the death cases. Moreover, we compared our method with five age-stratified strategies in cite{bubar2021model} based on their epidemics model. We also found its better to offer vaccine priorities to young people to curb the disease and minimize the deaths when the basic reproduction number $R_0$ is moderately above one, which describes the most world during COVID-19. Such phenomenon has been ignored in cite{bubar2021model}.
The COVID-19 pandemic, which spread rapidly in late 2019, has revealed that the use of computing and communication technologies provides significant aid in preventing, controlling, and combating infectious diseases. With the ongoing research in next- generation networking (NGN), the use of secure and reliable communication and networking is of utmost importance when dealing with users health records and other sensitive information. Through the adaptation of Artificial Intelligence (AI)-enabled NGN, the shape of healthcare systems can be altered to achieve smart and secure healthcare capable of coping with epidemics that may emerge at any given moment. In this article, we envision a cooperative and distributed healthcare framework that relies on state-of-the-art computing, communication, and intelligence capabilities, namely, Federated Learning (FL), mobile edge computing (MEC), and Blockchain, to enable epidemic (or suspicious infectious disease) discovery, remote monitoring, and fast health-authority response. The introduced framework can also enable secure medical data exchange at the edge and between different health entities. Such a technique, coupled with the low latency and high bandwidth functionality of 5G and beyond networks, would enable mass surveillance, monitoring and analysis to occur at the edge. Challenges, issues, and design guidelines are also discussed in this article with highlights on some trending solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا