ﻻ يوجد ملخص باللغة العربية
The task of manipulating the level and/or effects of individual instruments to recompose a mixture of recording, or remixing, is common across a variety of applications such as music production, audio-visual post-production, podcasts, and more. This process, however, traditionally requires access to individual source recordings, restricting the creative process. To work around this, source separation algorithms can separate a mixture into its respective components. Then, a user can adjust their levels and mix them back together. This two-step approach, however, still suffers from audible artifacts and motivates further work. In this work, we seek to learn to remix music directly. To do this, we propose two neural remixing architectures that extend Conv-TasNet to either remix via a) source estimates directly or b) their latent representations. Both methods leverage a remixing data augmentation scheme as well as a mixture reconstruction loss to achieve an end-to-end separation and remixing process. We evaluate our methods using the Slakh and MUSDB datasets and report both source separation performance and the remixing quality. Our results suggest learning-to-remix significantly outperforms a strong separation baseline, is particularly useful for small changes, and can provide interactive user-controls.
Detecting singing-voice in polyphonic instrumental music is critical to music information retrieval. To train a robust vocal detector, a large dataset marked with vocal or non-vocal label at frame-level is essential. However, frame-level labeling is
We propose an audio-to-audio neural network model that learns to denoise old music recordings. Our model internally converts its input into a time-frequency representation by means of a short-time Fourier transform (STFT), and processes the resulting
Background music affects lyrics intelligibility of singing vocals in a music piece. Automatic lyrics alignment and transcription in polyphonic music are challenging tasks because the singing vocals are corrupted by the background music. In this work,
We propose the Frechet Audio Distance (FAD), a novel, reference-free evaluation metric for music enhancement algorithms. We demonstrate how typical evaluation metrics for speech enhancement and blind source separation can fail to accurately measure t
Neural network architectures are at the core of powerful automatic speech recognition systems (ASR). However, while recent researches focus on novel model architectures, the acoustic input features remain almost unchanged. Traditional ASR systems rel