ترغب بنشر مسار تعليمي؟ اضغط هنا

Underwater inspection and intervention dataset

51   0   0.0 ( 0 )
 نشر من قبل Tomasz {\\L}uczy\\'nski
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a novel dataset for the development of visual navigation and simultaneous localisation and mapping (SLAM) algorithms as well as for underwater intervention tasks. It differs from existing datasets as it contains ground truth for the vehicles position captured by an underwater motion tracking system. The dataset contains distortion-free and rectified stereo images along with the calibration parameters of the stereo camera setup. Furthermore, the experiments were performed and recorded in a controlled environment, where current and waves could be generated allowing the dataset to cover a wide range of conditions - from calm water to waves and currents of significant strength.



قيم البحث

اقرأ أيضاً

Underwater image enhancement is such an important vision task due to its significance in marine engineering and aquatic robot. It is usually work as a pre-processing step to improve the performance of high level vision tasks such as underwater object detection. Even though many previous works show the underwater image enhancement algorithms can boost the detection accuracy of the detectors, no work specially focus on investigating the relationship between these two tasks. This is mainly because existing underwater datasets lack either bounding box annotations or high quality reference images, based on which detection accuracy or image quality assessment metrics are calculated. To investigate how the underwater image enhancement methods influence the following underwater object detection tasks, in this paper, we provide a large-scale underwater object detection dataset with both bounding box annotations and high quality reference images, namely OUC dataset. The OUC dataset provides a platform for researchers to comprehensive study the influence of underwater image enhancement algorithms on the underwater object detection task.
Underwater image enhancement has been attracting much attention due to its significance in marine engineering and aquatic robotics. Numerous underwater image enhancement algorithms have been proposed in the last few years. However, these algorithms a re mainly evaluated using either synthetic datasets or few selected real-world images. It is thus unclear how these algorithms would perform on images acquired in the wild and how we could gauge the progress in the field. To bridge this gap, we present the first comprehensive perceptual study and analysis of underwater image enhancement using large-scale real-world images. In this paper, we construct an Underwater Image Enhancement Benchmark (UIEB) including 950 real-world underwater images, 890 of which have the corresponding reference images. We treat the rest 60 underwater images which cannot obtain satisfactory reference images as challenging data. Using this dataset, we conduct a comprehensive study of the state-of-the-art underwater image enhancement algorithms qualitatively and quantitatively. In addition, we propose an underwater image enhancement network (called Water-Net) trained on this benchmark as a baseline, which indicates the generalization of the proposed UIEB for training Convolutional Neural Networks (CNNs). The benchmark evaluations and the proposed Water-Net demonstrate the performance and limitations of state-of-the-art algorithms, which shed light on future research in underwater image enhancement. The dataset and code are available at https://li-chongyi.github.io/proj_benchmark.html.
With the development of underwater object grabbing technology, underwater object recognition and segmentation of high accuracy has become a challenge. The existing underwater object detection technology can only give the general position of an object , unable to give more detailed information such as the outline of the object, which seriously affects the grabbing efficiency. To address this problem, we label and establish the first underwater semantic segmentation dataset of real scene(DUT-USEG:DUT Underwater Segmentation Dataset). The DUT- USEG dataset includes 6617 images, 1487 of which have semantic segmentation and instance segmentation annotations, and the remaining 5130 images have object detection box annotations. Based on this dataset, we propose a semi-supervised underwater semantic segmentation network focusing on the boundaries(US-Net: Underwater Segmentation Network). By designing a pseudo label generator and a boundary detection subnetwork, this network realizes the fine learning of boundaries between underwater objects and background, and improves the segmentation effect of boundary areas. Experiments show that the proposed method improves by 6.7% in three categories of holothurian, echinus, starfish in DUT-USEG dataset, and achieves state-of-the-art results. The DUT- USEG dataset will be released at https://github.com/baxiyi/DUT-USEG.
To boost the object grabbing capability of underwater robots for open-sea farming, we propose a new dataset (UDD) consisting of three categories (seacucumber, seaurchin, and scallop) with 2,227 images. To the best of our knowledge, it is the first 4K HD dataset collected in a real open-sea farm. We also propose a novel Poisson-blending Generative Adversarial Network (Poisson GAN) and an efficient object detection network (AquaNet) to address two common issues within related datasets: the class-imbalance problem and the problem of mass small object, respectively. Specifically, Poisson GAN combines Poisson blending into its generator and employs a new loss called Dual Restriction loss (DR loss), which supervises both implicit space features and image-level features during training to generate more realistic images. By utilizing Poisson GAN, objects of minority class like seacucumber or scallop could be added into an image naturally and annotated automatically, which could increase the loss of minority classes during training detectors to eliminate the class-imbalance problem; AquaNet is a high-efficiency detector to address the problem of detecting mass small objects from cloudy underwater pictures. Within it, we design two efficient components: a depth-wise-convolution-based Multi-scale Contextual Features Fusion (MFF) block and a Multi-scale Blursampling (MBP) module to reduce the parameters of the network to 1.3 million. Both two components could provide multi-scale features of small objects under a short backbone configuration without any loss of accuracy. In addition, we construct a large-scale augmented dataset (AUDD) and a pre-training dataset via Poisson GAN from UDD. Extensive experiments show the effectiveness of the proposed Poisson GAN, AquaNet, UDD, AUDD, and pre-training dataset.
Underwater object detection for robot picking has attracted a lot of interest. However, it is still an unsolved problem due to several challenges. We take steps towards making it more realistic by addressing the following challenges. Firstly, the cur rently available datasets basically lack the test set annotations, causing researchers must compare their method with other SOTAs on a self-divided test set (from the training set). Training other methods lead to an increase in workload and different researchers divide different datasets, resulting there is no unified benchmark to compare the performance of different algorithms. Secondly, these datasets also have other shortcomings, e.g., too many similar images or incomplete labels. Towards these challenges we introduce a dataset, Detecting Underwater Objects (DUO), and a corresponding benchmark, based on the collection and re-annotation of all relevant datasets. DUO contains a collection of diverse underwater images with more rational annotations. The corresponding benchmark provides indicators of both efficiency and accuracy of SOTAs (under the MMDtection framework) for academic research and industrial applications, where JETSON AGX XAVIER is used to assess detector speed to simulate the robot-embedded environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا