ﻻ يوجد ملخص باللغة العربية
The fraction of stars which are in binaries or triples at the time of stellar death and the fraction of these systems which survive the supernova (SN) explosion are crucial constraints for evolution models and predictions for gravitational wave source populations. These fractions are also subject to direct observational determination. Here we search 10 supernova remnants (SNR) containing compact objects with proper motions for unbound binaries or triples using Gaia EDR3 and new statistical methods and tests for false positives. We confirm the one known example of an unbound binary, HD 37424 in G180.0-01.7, and find no other examples. Combining this with our previous searches for bound and unbound binaries, and assuming no bias in favor of finding interacting binaries, we find that 72.0% (52.2%-86.4%, 90% confidence) of SN producing neutron stars are not binaries at the time of explosion, 13.9% (5.4%-27.2%) produce bound binaries and 12.5% (2.8%-31.3%) produce unbound binaries. With a strong bias in favor of finding interacting binaries, the medians shift to 76.0% were not binaries at death, 9.5% leave bound and 13.2% leave unbound binaries. Of explosions that do not leave binaries, <18.9% can be fully unbound triples. These limits are conservatively for M>5Msun stars, although the mass limits for individual systems are significantly stronger. At birth, the progenitor of PSR J0538+2817 was probably a 13-19Msun star, and at the time of explosion it was probably a Roche limited, partially stripped star transferring mass to HD 37424 and then producing a Type IIL or IIb supernova.
The number of binaries containing black holes or neutron stars depends critically on the fraction of binaries that survive supernova explosions. We searched for surviving star plus remnant binaries in a sample of 49 supernova remnants (SNR) containin
We perform binary evolution calculations on helium star - carbon-oxygen white dwarf (CO WD) binaries using the stellar evolution code MESA. This single degenerate channel may contribute significantly to thermonuclear supernovae at short delay times.
In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecog
Context. The companions of the exploding carbon-oxygen white dwarfs (CO WDs) for producing type Ia supernovae (SNe Ia) are still not conclusively confirmed. A red-giant (RG) star has been suggested to be the mass donor of the exploding WD, named as t
According to standard models supernovae produce radioactive $^{44}$Ti, which should be visible in gamma-rays following decay to $^{44}$Ca for a few centuries. $^{44}Ti production is believed to be the source of cosmic $^{44}$Ca, whose abundance is we