ﻻ يوجد ملخص باللغة العربية
In this work we present a class of locally recoverable codes, i.e. codes where an erasure at a position $P$ of a codeword may be recovered from the knowledge of the entries in the positions of a recovery set $R_P$. The codes in the class that we define have availability, meaning that for each position $P$ there are several distinct recovery sets. Also, the entry at position $P$ may be recovered even in the presence of erasures in some of the positions of the recovery sets, and the number of supported erasures may vary among the various recovery sets.
Locally recoverable codes were introduced by Gopalan et al. in 2012, and in the same year Prakash et al. introduced the concept of codes with locality, which are a type of locally recoverable codes. In this work we introduce a new family of codes wit
Maximum distance separable (MDS) codes are very important in both theory and practice. There is a classical construction of a family of $[2^m+1, 2u-1, 2^m-2u+3]$ MDS codes for $1 leq u leq 2^{m-1}$, which are cyclic, reversible and BCH codes over $ma
This paper studies the problem of code symbol availability: a code symbol is said to have $(r, t)$-availability if it can be reconstructed from $t$ disjoint groups of other symbols, each of size at most $r$. For example, $3$-replication supports $(1,
We propose a framework to study the effect of local recovery requirements of codeword symbols on the dimension of linear codes, based on a combinatorial proxy that we call emph{visible rank}. The locality constraints of a linear code are stipulated b
The paper presents techniques for analyzing the expected download time in distributed storage systems that employ systematic availability codes. These codes provide access to hot data through the systematic server containing the object and multiple r