ﻻ يوجد ملخص باللغة العربية
Room-temperature polar skyrmion bubbles that are recently found in oxide superlattice, have received enormous interests for their potential applications in nanoelectronics due to the nanometer size, emergent chirality, and negative capacitance. For practical applications, the ability to controllably manipulate them by using external stimuli is prerequisite. Here, we study the dynamics of individual polar skyrmion bubbles at the nanoscale by using in situ biasing in a scanning transmission electron microscope. The reversible electric field-driven phase transition between topological and trivial polar states are demonstrated. We create, erase and monitor the shrinkage and expansion of individual polar skyrmions. We find that their transition behaviors are substantially different from that of magnetic analogue. The underlying mechanism is discussed by combing with the phase-field simulations. The controllable manipulation of nanoscale polar skyrmions allows us to tune the dielectric permittivity at atomic scale and detailed knowledge of their phase transition behaviors provides fundamentals for their applications in nanoelectronics.
Quantum-dot states in graphene nanoribbons (GNR) were calculated using density-functional theory, considering the effect of the electric field of gate electrodes. The field is parallel to the GNR plane and was generated by an inhomogeneous charge she
The discovery of magnetic skyrmion bubbles in centrosymmetric magnets has been receiving increasing interest from the research community, due to the fascinating physics of topological spin textures and its possible applications to spintronics. Howeve
Skyrmions and antiskyrmions in magnetic ultrathin films are characterised by a topological charge describing how the spins wind around their core. This topology governs their response to forces in the rigid core limit. However, when internal core exc
We study theoretically the transport properties of a three-dimensional spin texture made from three orthogonal helices, which is essentially a lattice of monopole-antimonopole pairs connected by Skyrmion strings. This spin structure is proposed for M
Polar skyrmions are theoretically predicted to emerge resulting from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. With the di