ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear imaging of nanoscale topological corner states

119   0   0.0 ( 0 )
 نشر من قبل Thomas Zentgraf
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological states of light represent counterintuitive optical modes localized at boundaries of finite-size optical structures that originate from the properties of the bulk. Being defined by bulk properties, such boundary states are insensitive to certain types of perturbations, thus naturally enhancing robustness of photonic circuitries. Conventionally, the N-dimensional bulk modes correspond to (N-1)-dimensional boundary states. The higher-order bulk-boundary correspondence relates N-dimensional bulk to boundary states with dimensionality reduced by more than 1. A special interest lies in miniaturization of such higher-order topological states to the nanoscale. Here, we realize nanoscale topological corner states in metasurfaces with C6-symmetric honeycomb lattices. We directly observe nanoscale topology-empowered edge and corner localizations of light and enhancement of light-matter interactions via a nonlinear imaging technique. Control of light at the nanoscale empowered by topology may facilitate miniaturization and on-chip integration of classical and quantum photonic devices.


قيم البحث

اقرأ أيضاً

Topological states of light have received significant attention due to the existence of counter-intuitive nontrivial boundary effects originating from the bulk properties of optical systems. Such boundary states, having their origin in topological pr operties of the bulk, are protected from perturbations and defects, and they show promises for a wide range of applications in photonic circuitry. The bulk-boundary correspondence relates the N-dimensional bulk modes to (N-1)-dimensional boundary states. Recently, the bulk-boundary correspondence was generalized to higher-order effects such that an N-dimensional bulk defines its (N-M)-dimensional boundary states. Prominent examples are topological corner states of light in two-dimensional structures that have been realized at the micrometer-scale. Such corner states, due to their tight confinement in all directions, provide a novel route towards topological cavities. Here we bring the concept of topological corner states to the nanoscale for enhancing nonlinear optical processes. Specifically, we design topologically nontrivial hybrid metasurfaces with C6-symmetric honeycomb lattices supporting both edge and corner states. We report on direct observations of nanoscale topology-empowered localization of light in corner states revealed via a nonlinear imaging technique. Nanoscale topological corner states pave the way towards on-chip applications in compact classical and quantum nanophotonic devices.
Being motivated by the recent prediction of high-$Q$ supercavity modes in subwavelength dielectric resonators, we study the second-harmonic generation from isolated subwavelength AlGaAs nanoantennas pumped by a structured light. We reveal that nonlin ear effects at the nanoscale can be enhanced dramatically provided the resonator parameters are tuned to the regime of the bound state in the continuum. We predict a record-high conversion efficiency for nanoscale resonators that exceeds by two orders of magnitude the conversion efficiency observed at the conditions of magnetic dipole Mie resonance, thus opening the way for highly-efficient nonlinear metadevices.
Topological photonics provides a fundamental framework for robust manipulation of light, including directional transport and localization with built-in immunity to disorder. Combined with an optical gain, active topological cavities hold special prom ise for a design of light-emitting devices. Most studies to date have focused on lasing at topological edges of finite systems or domain walls. Recently discovered higher-order topological phases enable strong high-quality confinement of light at the corners. Here we demonstrate lasing action of corner states in a nanophotonic topological cavity. We identify four multipole corner modes with distinct emission profiles via hyperspectral imaging and discern signatures of non-Hermitian radiative coupling of leaky topological states. In addition, depending on the pump position in a large-size cavity, we selectively generate lasing from either edge or corner states within the topological bandgap. Our findings introduce pathways to engineer collective resonances and tailor generation of light in active topological circuits.
123 - Ofer Kfir 2017
This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and p hase maps by lensless imaging. A diffraction-limited spatial resolution of 49 nm is achieved with iterative phase reconstruction enhanced by a holographic mask. Harnessing the unique coherence of high harmonics, this approach will facilitate quantitative, element-specific and spatially-resolved studies of ultrafast magnetization dynamics, advancing both fundamental and applied aspects of nanoscale magnetism.
Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and in terface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein we present a non-invasive depth-profiling technique based on $beta$-NMR spectroscopy of radioactive $^8$Li$^+$ ions that can provide one-dimensional imaging in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the $^8$Li nuclear resonance near the surface and 10 nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological non-trivial characteristics that affect the electron-nuclear hyperfine field, the metallic shift and magnetic order. These nanoscale variations in $beta$-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا