ترغب بنشر مسار تعليمي؟ اضغط هنا

An ACA Survey of [CI] $^3P_1-^3P_0$, CO $J=4-3$, and Dust Continuum in Nearby U/LIRG

88   0   0.0 ( 0 )
 نشر من قبل Tomonari Michiyama
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of surveying [CI] $^3P_1-^3P_0$, $^{12}$CO $J=4-3$, and 630 $mu$m dust continuum emission for 36 nearby ultra/luminous infrared galaxies (U/LIRGs) using the Band 8 receiver mounted on the Atacama Compact Array (ACA) of the Atacama Large Millimeter/submillimeter Array. We describe the survey, observations, data reduction, and results; the main results are as follows. (i) We confirmed that [CI] $^3P_1-^3P_0$ has a linear relationship with both the $^{12}$CO $J=4-3$and 630 $mu$m continuum. (ii) In NGC 6052 and NGC 7679, $^{12}$CO $J=4-3$ was detected but [CI] $^3P_1-^3P_0$ was not detected with a [CI] $^3P_1-^3P_0$/ $^{12}$CO $J=4-3$ ratio of $lesssim0.08$. Two possible scenarios of weak [CI] $^3P_1-^3P_0$ emission are C$^0$-poor/CO-rich environments or an environment with an extremely large [CI] $^3P_1-^3P_0$ missing flux. (iii) There is no clear evidence showing that galaxy mergers, AGNs, and dust temperatures control the ratios of [CI] $^3P_1-^3P_0$/ $^{12}$CO $J=4-3$ and $L_{rm [CI](1-0)}/L_{rm 630mu m}$. (iv) We compare our nearby U/LIRGs with high-z galaxies, such as galaxies on the star formation main sequence (MS) at z$sim1$ and submillimeter galaxies (SMGs) at $z=2-4$. We found that the mean value for the [CII] $^3P_1$--$^3P_0$/ $^{12}$CO $J=4-3$ ratio of U/LIRGs is similar to that of SMGs but smaller than that of galaxies on the MS.

قيم البحث

اقرأ أيضاً

Atomic carbon (CI) has been proposed to be a global tracer of the molecular gas as a substitute for CO, however, its utility remains unproven. To evaluate the suitability of CI as the tracer, we performed [CI]$(^3P_1-^3P_0)$ (hereinafter [CI](1-0)) m apping observations of the northern part of the nearby spiral galaxy M83 with the ASTE telescope and compared the distributions of [CI](1-0) with CO lines (CO(1-0), CO(3-2), and $^{13}$CO(1-0)), HI, and infrared (IR) emission (70, 160, and 250$ mu$m). The [CI](1-0) distribution in the central region is similar to that of the CO lines, whereas [CI](1-0) in the arm region is distributed outside the CO. We examined the dust temperature, $T_{rm dust}$, and dust mass surface density, $Sigma_{rm dust}$, by fitting the IR continuum-spectrum distribution with a single-temperature modified blackbody. The distribution of $Sigma_{rm dust}$ shows a much better consistency with the integrated intensity of CO(1-0) than with that of [CI](1-0), indicating that CO(1-0) is a good tracer of the cold molecular gas. The spatial distribution of the [CI] excitation temperature, $T_{rm ex}$, was examined using the intensity ratio of the two [CI] transitions. An appropriate $T_{rm ex}$ at the central, bar, arm, and inter-arm regions yields a constant [C]/[H$_2$] abundance ratio of $sim7 times 10^{-5}$ within a range of 0.1 dex in all regions. We successfully detected weak [CI](1-0) emission, even in the inter-arm region, in addition to the central, arm, and bar regions, using spectral stacking analysis. The stacked intensity of [CI](1-0) is found to be strongly correlated with $T_{rm dust}$. Our results indicate that the atomic carbon is a photodissociation product of CO, and consequently, compared to CO(1-0), [CI](1-0) is less reliable in tracing the bulk of cold molecular gas in the galactic disk.
We present high-quality ALMA Band 8 observations of the [CI] $^3P_1$-$^3P_0$ line and 609 $mu$m dust continuum emission toward the nearby luminous infrared galaxy (LIRG) IRAS F18293-3413, as well as matched resolution (300-pc scale) Band 3 CO $J=$1-0 data, which allow us to assess the use of the [CI] $^3P_1$-$^3P_0$ line as a total gas mass estimator. We find that the [CI] line basically traces structures detected in CO (and dust), and a mean (median) [CI]/CO luminosity ($L_{rm [CI]}$/$L_{rm CO}$) ratio of 0.17 (0.16) with a scatter of 0.04. However, a pixel-by-pixel comparison revealed that there is a radial $L_{rm [CI]}$/$L_{rm CO}$ gradient and a superlinear $L_{rm CO}$ vs. $L_{rm [CI]}$ relation (slope = 1.54 $pm$ 0.02) at this spatial scale, which can be explained by radial excitation and/or line opacity gradients. Based on the molecular gas masses converted from the dust continuum emission, we found that the CO-to-H$_2$ and [CI]-to-H$_2$ conversion factors are relatively flat across the molecular gas disk with a median value of 3.5$^{+1.9}_{-1.3}$ and 20.7$^{+9.2}_{-4.9}$ $M_{odot}$ (K km s$^{-1}$ pc$^2$)$^{-1}$, respectively. A non-LTE calculation yields that typical molecular gas properties seen in nearby (U)LIRGs ($n_{rm H_2}$ = 10$^{3-4}$ cm$^{-3}$, $T_{rm kin}$ $sim$ 50 K, and $X_{rm CI}$ = (0.8-2.3) $times$ 10$^{-5}$) can naturally reproduce the derived [CI]-to-H$_2$ conversion factor. However, we caution that a careful treatment of the physical gas properties is required in order to measure H$_2$ gas mass distributions in galaxies using a single [CI] line. Otherwise, a single [CI] line is not a good molecular gas estimator in a spatially resolved manner.
We present HCN J=4-3 and HCO^+ J=4-3 maps of six nearby star-forming galaxies, NGC 253, NGC 1068, IC 342, M82, M83, and NGC 6946, obtained with the James Clerk Maxwell Telescope as part of the MALATANG survey. All galaxies were mapped in the central 2 arcmin $times$ 2 arcmin region at 14 arcsec (FWHM) resolution (corresponding to linear scales of ~ 0.2-1.0 kpc). The L_IR-L_dense relation, where the dense gas is traced by the HCN J=4-3 and the HCO^+ J=4-3 emission, measured in our sample of spatially-resolved galaxies is found to follow the linear correlation established globally in galaxies within the scatter. We find that the luminosity ratio, L_IR/L_dense, shows systematic variations with L_IR within individual spatially resolved galaxies, whereas the galaxy-integrated ratios vary little. A rising trend is also found between L_IR/L_dense ratio and the warm-dust temperature gauged by the 70 mu m/100 mu m flux ratio. We find the luminosity ratios of IR/HCN(4-3) and IR/HCO^+(4-3), which can be taken as a proxy for the efficiency of star formation in the dense molecular gas (SFE_dense), appears to be nearly independent of the dense-gas fraction (f_dense) for our sample of galaxies. The SFE of the total molecular gas (SFE_mol) is found to increase substantially with f_dense when combining our data with that on local (ultra)luminous infrared galaxies and high-z quasars. The mean L_HCN(4-3)/L_HCO^+(4-3) line ratio measured for the six targeted galaxies is 0.9+/-0.6. No significant correlation is found for the L_HCN(4-3)/L_HCO^+(4-3) ratio with the SFR as traced by L_IR, nor with the warm-dust temperature, for the different populations of galaxies.
We have made the first map of CO(J=3-2) emission covering the disk of the edge-on galaxy, NGC~4631, which is known for its spectacular gaseous halo. The strongest emission, which we model with a Gaussian ring,occurs within a radius of 5 kpc. Weaker d isk emission is detected out to radii of 12 kpc, the most extensive molecular component yet seen in this galaxy. From comparisons with infrared data, we find that CO(J=3-2) emission more closely follows the hot dust component, rather than the cold dust,consistent with it being a good tracer of star formation. The first maps of $R_{3-2/1-0}$, H$_2$ mass surface density and SFE have been made for the inner 2.4 kpc radius region. Only 20% of the SF occurs in this region and excitation conditions are typical of galaxy disks, rather than of central starbursts. The SFE suggests long gas consumption timescales ($>$ $10^9$ yr). The velocity field is dominated by a steeply rising rotation curve in the region of the central molecular ring followed by a flatter curve in the disk. A very steep gradient in the rotation curve is observed at the nucleus, providing the first evidence for a central concentration of mass: M$_{dyn},=,5,times,10^7$ M$_odot$ within a radius of 282 pc. The velocity field shows anomalous features indicating the presence of molecular outflows; one of them is associated with a previously observed CO(J=1-0) expanding shell. Consistent with these outflows is the presence of a thick ($z$ up to $1.4$ kpc) CO(J=3-2) disk. We suggest that the interaction between NGC~4631 and its companion(s) has agitated the disk and also initiated star formation which was likely higher in the past than it is now. These may be necessary conditions for seeing prominent halos.
(Ultra) Luminous Infrared Galaxies ((U)LIRGs) are objects characterized by their extreme infrared (8-1000 $mu$m) luminosities ($L_{LIRG}>10^{11} $L$_odot$ and $L_{ULIRG}>10^{12}$ L$_odot$). The Herschel Comprehensive ULIRG Emission Survey (HerCULES; PI van der Werf) presents a representative flux-limited sample of 29 (U)LIRGs that spans the full luminosity range of these objects (10$^{11}leq L_odot geq10^{13}$). With the emph{Herschel Space Observatory}, we observe [CII] 157 $mu$m, [OI] 63 $mu$m, and [OI] 145 $mu$m line emission with PACS, CO J=4-3 through J=13-12, [CI] 370 $mu$m, and [CI] 609 $mu$m with SPIRE, and low-J CO transitions with ground-based telescopes. The CO ladders of the sample are separated into three classes based on their excitation level. In 13 of the galaxies, the [OI] 63 $mu$m emission line is self absorbed. Comparing the CO excitation to the IRAS 60/100 $mu$m ratio and to far infrared luminosity, we find that the CO excitation is more correlated to the far infrared colors. We present cooling budgets for the galaxies and find fine-structure line flux deficits in the [CII], [SiII], [OI], and [CI] lines in the objects with the highest far IR fluxes, but do not observe this for CO $4leq J_{upp}leq13$. In order to study the heating of the molecular gas, we present a combination of three diagnostic quantities to help determine the dominant heating source. Using the CO excitation, the CO J=1-0 linewidth, and the AGN contribution, we conclude that galaxies with large CO linewidths always have high-excitation CO ladders, and often low AGN contributions, suggesting that mechanical heating is important.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا