ﻻ يوجد ملخص باللغة العربية
This article investigates the large deflection and post-buckling of composite plates by employing the Carrera Unified Formulation (CUF). As a consequence, the geometrically nonlinear governing equations and the relevant incremental equations are derived in terms of fundamental nuclei, which are invariant of the theory approximation order. By using the Lagrange expansion functions across the laminate thickness and the classical finite element (FE) approximation, layer-wise (LW) refined plate models are implemented. The Newton-Raphson linearization scheme with the path-following method based on the arc-length constraint is employed to solve geometrically non-linear composite plate problems. In this study, different composite plates subjected to large deflections/rotations and post-buckling are analyzed, and the corresponding equilibrium curves are compared with the results in the available literature or the traditional FEM-based solutions. The effects of various parameters, such as stacking sequence, number of layers, loading conditions, and edge conditions are demonstrated. The accuracy and reliability of the proposed method for solving the composite plates geometrically nonlinear problems are verified.
Motivated by recent experiments showing the buckling of microtubules in cells, we study theoretically the mechanical response of, and force propagation along elastic filaments embedded in a non-linear elastic medium. We find that, although embedded m
As 2D materials such as graphene, transition metal dichalcogenides, and 2D polymers become more prevalent, solution processing and colloidal-state properties are being exploited to create advanced and functional materials. However, our understanding
We investigate the buckling and post-buckling properties of a hyperelastic half-space coated by two hyperelastic layers when the composite structure is subjected to a uniaxial compression. In the case of a half-space coated with a {it single} layer,
We provide an extension to previous analysis of the localised beading instability of soft slender tubes under surface tension and axial stretching. The primary questions pondered here are: under what loading conditions, if any, can bifurcation into c
We discuss shape profiles emerging in inhomogeneous growth of squeezed tissues. Two approaches are used simultaneously: i) conformal embedding of two-dimensional domain with hyperbolic metrics into the plane, and ii) a pure energetic consideration ba