ﻻ يوجد ملخص باللغة العربية
Long-lived excited states of atomic nuclei can act as energy traps. These states, known as nuclear isomers, can store a large amount of energy over long periods of time, with a very high energy-to-mass ratio. Under natural conditions, the trapped energy is only slowly released, limited by the long isomer lifetimes. Dynamical external control of nuclear state population has proven so far very challenging, despite ground-breaking incentives for a clean and efficient energy storage solution. Here, we describe a protocol to achieve the external control of the isomeric nuclear decay by using electrons whose wavefunction has been especially designed and reshaped on demand. Recombination of these electrons into the atomic shell around the isomer can lead to the controlled release of the stored nuclear energy. On the example of $^{93m}$Mo, we show that the use of tailored electron vortex beams increases the depletion by four orders of magnitude compared to the spontaneous nuclear decay of the isomer. Furthermore, specific orbitals can sustain an enhancement of the recombination cross section for vortex electron beams by as much as six orders of magnitude, providing a handle for manipulating the capture mechanism. These findings open new prospects for controlling the interplay between atomic and nuclear degrees of freedom, with potential energy-related and high-energy radiation sources applications.
A new mechanism of nuclear excitation via two-photon electron transitions (NETP) is proposed and studied theoretically. As a generic example, detailed calculations are performed for the $E1E1$ $1s2s,^1S_0 rightarrow 1s^2,^1S_0$ two-photon decay of He
Atomic physics techniques for the determination of ground-state properties of radioactive isotopes are very sensitive and provide accurate masses, binding energies, Q-values, charge radii, spins, and electromagnetic moments. Many fields in nuclear ph
Nuclear isomers are populated in the rapid neutron capture process (r process) of nucleosynthesis. The r process may cover a wide range of temperatures, potentially starting from several tens of GK (several MeV) and then cooling as material is ejecte
Particles in quantum vortex states (QVS) carrying definite orbital angular momenta (OAM) brings new perspectives in various fundamental interaction processes. When unique properties arise in the QVS, understanding how OAM manifest itself between init
The recent paper by Chiara et al. provided the first experimental evidence of nuclear excitation by electron capture (NEEC), responding a long-standing theoretical prediction. NEEC was inferred to be the main channel to excite an isomer in Molybdenum