ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Abelian bosonization in a (3+1)-d Kondo semimetal via quantum anomalies

94   0   0.0 ( 0 )
 نشر من قبل Alireza Parhizkar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Kondo lattice models have established themselves as an ideal platform for studying the interplay between topology and strong correlations such as in topological Kondo insulators or Weyl-Kondo semimetals. The nature of these systems requires the use of non-perturbative techniques which are few in number, especially in high dimensions. Motivated by this we study a model of Dirac fermions in $3+1$ dimensions coupled to an arbitrary array of spins via a generalization of functional non-Abelian bosonization. We show that there exists an exact transformation of the fermions which allows us to write the system as decoupled free fermions and interacting spins. This decoupling transformation consists of a local chiral, Weyl and Lorentz transformation parameterized by solutions to a set of nonlinear differential equations which order by order takes the form of Maxwells equations with the spins acting as sources. Owing to its chiral and Weyl components this transformation is anomalous and generates a contribution to the action. From this we obtain the effective action for the spins and expressions for the anomalous transport in the system. In the former we find that the coupling to the fermions generates kinetic terms for the spins, a long ranged interaction and a Wess-Zumino like term. In the latter we find generalizations of the chiral magnetic and quantum Hall effects. These results represent a rare case of an exact non-perturbative theory of a strongly correlated system in four space-time dimensions. The methods discussed here can be generalized to other situations and may provide a reliable route to understanding non-Fermi liquid behavior.



قيم البحث

اقرأ أيضاً

201 - Hart Goldman , Ramanjit Sohal , 2019
It is an important open problem to understand the landscape of non-Abelian fractional quantum Hall phases which can be obtained starting from physically motivated theories of Abelian composite particles. We show that progress on this problem can be m ade using recently proposed non-Abelian bosonization dualities in 2+1 dimensions, which morally relate $U(N)_k$ and $SU(k)_{-N}$ Chern-Simons-matter theories. The advantage of these dualities is that regions of the phase diagram which may be obscure on one side of the duality can be accessed by condensing local operators on the other side. Starting from parent Abelian states, we use this approach to construct Landau-Ginzburg theories of non-Abelian states through a pairing mechanism. In particular, we obtain the bosonic Read-Rezayi sequence at fillings $ u=k/(kM+2)$ by starting from $k$ layers of bosons at $ u=1/2$ with $M$ Abelian fluxes attached. The Read-Rezayi states arise when $k$-clusters of the dual non-Abelian bosons condense. We extend this construction by showing that $N_f$-component generalizations of the Halperin $(2,2,1)$ bosonic states have dual descriptions in terms of $SU(N_f+1)_1$ Chern-Simons-matter theories, revealing an emergent global symmetry in the process. Clustering $k$ layers of these theories yields a non-Abelian $SU(N_f)$-singlet state at filling $ u = kN_f / (N_f + 1 + kMN_f)$.
The classification of topological phases of matter in the presence of interactions is an area of intense interest. One possible means of classification is via studying the partition function under modular transforms, as the presence of an anomalous p hase arising in the edge theory of a D-dimensional system under modular transformation, or modular anomaly, signals the presence of a (D+1)-D non-trivial bulk. In this work, we discuss the modular transformations of conformal field theories along a (2+1)-D and a (3+1)-D edge. Using both analytical and numerical methods, we show that chiral complex free fermions in (2+1)-D and (3+1)-D are modular invariant. However, we show in (3+1)-D that when the edge theory is coupled to a background U(1) gauge field this results in the presence of a modular anomaly that is the manifestation of a quantum Hall effect in a (4+1)-D bulk. Using the modular anomaly, we find that the edge theory of (4+1)-D insulator with spacetime inversion symmetry(P*T) and fermion number parity symmetry for each spin becomes modular invariant when 8 copies of the edges exist.
The observation of quantum criticality in diverse classes of strongly correlated electron systems has been instrumental in establishing ordering principles, discovering new phases, and identifying the relevant degrees of freedom and interactions. At focus so far have been insulators and metals. Semimetals, which are of great current interest as candidate phases with nontrivial topology, are much less explored in experiments. Here we study the Kondo semimetal CeRu$_4$Sn$_6$ by magnetic susceptibility, specific heat, and inelastic neutron scattering experiments. The power-law divergence of the magnetic Grunesien ratio reveals that, surprisingly, this compound is quantum critical without tuning. The dynamical energy over temperature scaling in the neutron response, seen throughout the Brillouin zone, as well as the temperature dependence of the static uniform susceptibility indicate that temperature is the only energy scale in the criticality. Such behavior, which has been associated with Kondo destruction quantum criticality in metallic systems, may well be generic in the semimetal setting.
Certain patterns of symmetry fractionalization in (2+1)D topologically ordered phases of matter can be anomalous, which means that they possess an obstruction to being realized in purely (2+1)D. In this paper we demonstrate how to compute the anomaly for symmetry-enriched topological (SET) states of bosons in complete generality. We demonstrate how, given any unitary modular tensor category (UMTC) and symmetry fractionalization class for a global symmetry group $G$, one can define a (3+1)D topologically invariant path integral in terms of a state sum for a $G$ symmetry-protected topological (SPT) state. We present an exactly solvable Hamiltonian for the system and demonstrate explicitly a (2+1)D $G$ symmetric surface termination that hosts deconfined anyon excitations described by the given UMTC and symmetry fractionalization class. We present concrete algorithms that can be used to compute anomaly indicators in general. Our approach applies to general symmetry groups, including anyon-permuting and anti-unitary symmetries. In addition to providing a general way to compute the anomaly, our result also shows, by explicit construction, that every symmetry fractionalization class for any UMTC can be realized at the surface of a (3+1)D SPT state. As a byproduct, this construction also provides a way of explicitly seeing how the algebraic data that defines symmetry fractionalization in general arises in the context of exactly solvable models. In the case of unitary orientation-preserving symmetries, our results can also be viewed as providing a method to compute the $mathcal{H}^4(G, U(1))$ obstruction that arises in the theory of $G$-crossed braided tensor categories, for which no general method has been presented to date.
We study the problem of disorder-free metals near a continuous Ising nematic quantum critical point in $d=3+1$ dimensions. We begin with perturbation theory in the `Yukawa coupling between the electrons and undamped bosons (nematic order parameter fl uctuations) and show that the perturbation expansion breaks down below energy scales where the bosons get substantially Landau damped. Above this scale however, we find a regime in which low-energy fermions obtain an imaginary self-energy that varies linearly with frequency, realizing the `marginal Fermi liquid phenomenologycite{Varma}. We discuss a large N theory in which the marginal Fermi liquid behavior is enhanced while the role of Landau damping is suppressed, and show that quasiparticles obtain a decay rate parametrically larger than their energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا