ﻻ يوجد ملخص باللغة العربية
Past work on optimizing fabrication plans given a carpentry design can provide Pareto-optimal plans trading off between material waste, fabrication time, precision, and other considerations. However, when developing fabrication plans, experts rarely restrict to a single design, instead considering families of design variations, sometimes adjusting designs to simplify fabrication. Jointly exploring the design and fabrication plan spaces for each design is intractable using current techniques. We present a new approach to jointly optimize design and fabrication plans for carpentered objects. To make this bi-level optimization tractable, we adapt recent work from program synthesis based on equality graphs (e-graphs), which encode sets of equivalent programs. Our insight is that subproblems within our bi-level problem share significant substructures. By representing both designs and fabrication plans in a new bag of parts(BOP) e-graph, we amortize the cost of optimizing design components shared among multiple candidates. Even using BOP e-graphs, the optimization space grows quickly in practice. Hence, we also show how a feedback-guided search strategy dubbed Iterative Contraction and Expansion on E-graphs(ICEE) can keep the size of the e-graph manage-able and direct the search toward promising candidates. We illustrate the advantages of our pipeline through examples from the carpentry domain.
Past work on optimizing fabrication plans given a carpentry design can provide Pareto-optimal plans trading off between material waste, fabrication time, precision, and other considerations. However, when developing fabrication plans, experts rarely
We propose a novel method to generate fabrication blueprints from images of carpentered items. While 3D reconstruction from images is a well-studied problem, typical approaches produce representations that are ill-suited for computer-aided design and
Despite the increasing availability of personal fabrication hardware and services, the true potential of digital fabrication remains unrealized due to lack of computational techniques that can support 3D shape design by non-experts. This work develop
Nanoantennas for light enhance light-matter interaction at the nanoscale making them useful in optical communication, sensing, and spectroscopy. So far nanoantenna engineering has been largely based on rules derived from the radio frequency domain wh
PARS (Plasma Acceleration Research Station) is an electron beam driven plasma wakefield acceleration test stand proposed for VELA/CLARA facility in Daresbury Laboratory. In order to optimise various operational configurations, 2D numerical studies we