ﻻ يوجد ملخص باللغة العربية
Improving lithium-ion batteries (LIBs) safety remains in a challenging task when compared with the tremendous progress made in their performance in recent years. Embedding thermo-responsive polymer switching materials (TRPS) into LIB cells has been proved to be a promising strategy to provide consistent thermal abuse protections at coin-cell level. However, it is unrealistic to achieve large-scale applications without further demonstration in high-capacity pouch cells. Here, we employed tungsten carbide (WC) as a novel conductive filler, and successfully overcame the intrinsic processing difficulty of polyethylene (PE) matrix in a scalable solvent-based method to obtain ultra-thin, uniform, highly conductive TRPS. Moreover, by integrating TRPS directly into LIB electrodes, no extra fabrication facilities or processes are required for making the cells. As a result, multi-layer pouch cells with consistent electrochemical performance and thermal abuse protection function were fabricated using industry relevant manufacturing techniques, which brings TRPS one step further to the real application scenarios.
The paper presents a comprehensive analysis of elastic properties of polystyrene-based nanocomposites filled with different types of inclusions: small spherical particles (SiO2 and Al2O3), alumosilicates (montmorillonite, halloysite natural tubules a
We study two thermo-electrochemical models for lithium-ion batteries. The first is based on volume averaging the electrode microstructure whereas the second is based on the pseudo-two-dimensional (P2D) approach which treats the electrode as a collect
For a wide range of modern soft functional materials the selective transport of sub-nanometer-sized molecules (`penetrants) through a stimuli-responsive polymeric membrane is key to the desired function. In this study, we investigate the diffusion pr
Among the several flexible thermoelectric modules in existence, sintered Bi-Te-based modules represent a viable option because of their high output power density and flexibility, which enables the use of arbitrary heat sources. We have fabricated Bi-
We demonstrate the fabrication of large-scale arrays of single photon emitters (SPEs) in hexagonal boron nitride (hBN). Bottom-up growth of hBN onto nanoscale arrays of dielectric pillars yields corresponding arrays of hBN emitters at the pillar site