ترغب بنشر مسار تعليمي؟ اضغط هنا

Ancilla assisted Discrete Time Crystals in Non-interacting Spin Systems

110   0   0.0 ( 0 )
 نشر من قبل Dasari Durga Bhaktavatsala Rao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show here through experiments and exact analytical models the emergence of discrete time translation symmetry breaking in non-interacting systems. These time-periodic structures become stable against perturbations only in the presence of their interaction with the ancillary quantum system and display subharmonic response over a range of rotation angle errors. We demonstrate this effect for central spin and spin-mechanical systems, where the ancillary induced interaction among the spins stabilizes the spin dynamics against finite errors. Further, we extend these studies and show the possibility to even achieve non-local (remote) synchronization of such Floquet crystals.



قيم البحث

اقرأ أيضاً

The exotic phenomenon of time translation symmetry breaking under periodic driving - the time crystal - has been shown to occur in many-body systems even in clean setups where disorder is absent. In this work, we propose the realization of time-cryst als in few-body systems, both in the context of trapped cold atoms with strong interactions and of a circuit of superconducting qubits. We show how these two models can be treated in a fairly similar way by adopting an effective spin chain description, to which we apply a simple driving protocol. We focus on the response of the magnetization in the presence of imperfect pulses and interactions, and show how the results can be interpreted, in the cold atomic case, in the context of experiments with trapped bosons and fermions. Furthermore, we provide a set of realistic parameters for the implementation of the superconducting circuit.
We review the use of an external auxiliary detector for measuring the full distribution of the work performed on or extracted from a quantum system during a unitary thermodynamic process. We first illustrate two paradigmatic schemes that allow one to measure the work distribution: a Ramsey technique to measure the characteristic function and a positive operator valued measure (POVM) scheme to directly measure the work probability distribution. Then, we show that these two ideas can be understood in a unified framework for assessing work fluctuations through a generic quantum detector and describe two protocols that are able to yield complementary information. This allows us also to highlight how quantum work is affected by the presence of coherences in the systems initial state. Finally, we describe physical implementations and experimental realisations of the first two schemes.
We demonstrate that the prethermal regime of periodically-driven, classical many-body systems can host non-equilibrium phases of matter. In particular, we show that there exists an effective Hamiltonian, which captures the dynamics of ensembles of cl assical trajectories, despite the breakdown of this description at the single trajectory level. In addition, we prove that the effective Hamiltonian can host emergent symmetries protected by the discrete time-translation symmetry of the drive. The spontaneous breaking of such an emergent symmetry leads to a sub-harmonic response, characteristic of time crystalline order, that survives to exponentially late times. To this end, we numerically demonstrate the existence of prethermal time crystals in both a one-dimensional, long-range interacting spin chain and a nearest-neighbor spin model on a two-dimensional square lattice.
Time crystals are periodic states exhibiting spontaneous symmetry breaking in either time-independent or periodically forced quantum many-body systems. Spontaneous modification of discrete time translation symmetry in a periodically driven physical s ystem can create a discrete time crystal (DTC). DTCs constitute a state of matter with properties such as temporal rigid long-range order and coherence which are inherently desirable for quantum computing and quantum information processing. Despite their appeal, experimental demonstrations of DTCs are scarce and hence many significant aspects of their behavior remain unexplored. Here, we report the experimental observation and theoretical investigation of photonic DTCs in a Kerr-nonlinear optical microcavity. Empowered by the simultaneous self-injection locking of two independent lasers with arbitrarily large frequency separation to two cavity modes and a dissipative soliton, this room-temperature all-optical platform enables observing novel states like DTCs carrying defects, and realizing long-awaited phenomena such as DTC phase transitions and mutual interactions. To the best of our knowledge, this is the first experimental demonstration of a dissipative DTCs, as well as the concurrent self-injection locking of two continuous-wave lasers to different modes of a Kerr cavity. Combined with monolithic fabrication, it can result in chip-scale DTCs, paving the way for liberating time crystals from sophisticated laboratory setups and propelling them toward real-world applications.
Efficient simulations of the dynamics of open systems is of wide importance for quantum science and tech-nology. Here, we introduce a generalization of the transfer-tensor, or discrete-time memory kernel, formalism to multi-time measurement scenarios . The transfer-tensor method sets out to compute the state of an open few-body quantum system at long times, given that only short-time system trajectories are available. Here, we showthat the transfer-tensor method can be extended to processes which include multiple interrogations (e.g. measurements) of the open system dynamics as it evolves, allowing us to propagate high order short-time correlation functions to later times, without further recourse to the underlying system-environment evolution. Our approach exploits the process-tensor description of open quantum processes to represent and propagate the dynamics in terms of an object from which any multi-time correlation can be extracted. As an illustration of the utility of the method, we study the build-up of system-environment correlations in the paradigmatic spin-boson model, and compute steady-state emission spectra, taking fully into account system-environment correlations present in the steady state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا