ﻻ يوجد ملخص باللغة العربية
Buoyant shear layers are encountered in many engineering and environmental applications and have been studied by researchers in the context of experiments and modeling for decades. Often, these flows have high Reynolds and Richardson numbers, and this leads to significant/intractable space-time resolution requirements for DNS or LES modeling. On the other hand, many of the important physical mechanisms in these systems, such as stress anisotropy, wake stabilization, and regime transition, inherently render eddy viscosity-based RANS modeling inappropriate. Accordingly, we pursue second-moment closure (SMC), i.e., full Reynolds stress/flux/variance modeling, for moderate Reynolds number non-stratified and stratified shear layers for which DNS is possible. A range of sub-model complexity is pursued for the diffusion of stresses, density fluxes and variance, pressure strain and scrambling, and dissipation. These sub-models are evaluated in terms of how well they are represented by DNS in comparison to the exact Reynolds averaged terms, and how well they impact the accuracy of the full RANS closure. For the non-stratified case, the SMC model predicts the shear layer growth rate and Reynolds shear stress profiles accurately. Stress anisotropy and budgets are captured only qualitatively. Comparing DNS of exact and modeled terms, inconsistencies in model performance and assumptions are observed, including inaccurate prediction of individual statistics, non-negligible pressure diffusion, and dissipation anisotropy. For the stratified case, shear layer and gradient Richardson number growth rates, and stress, flux, and variance decay rates, are captured with less accuracy than corresponding flow parameters in the non-stratified case. These studies lead to several recommendations for model improvement.
Instability of stratified multi-phase flow in a rotating platform becomes important because of a potential role in micro-mixing and micro-machines. Centrifugal actuation can play an important role in driving the flow and Coriolis force can enhance th
The Lagrangian (LA) and Eulerian Acceleration (EA) properties of fluid particles in homogeneous turbulence with uniform shear and uniform stable stratification are studied using direct numerical simulations. The Richardson number is varied from $Ri=0
Exact solutions for laminar stratified flows of Newtonian/non-Newtonian shear-thinning fluids in horizontal and inclined channels are presented. An iterative algorithm is proposed to compute the laminar solution for the general case of a Carreau non-
Mixing layers can grow in time or space by vortex pairings that succeed each other in a nearly self-similar way. We use a point vortex model to study how confinement eventually limits this growth process, leading us to propose a wavelength selection mechanism for free shear layers with counterflow.
Linear stability of horizontal and inclined stratified channel flows of Newtonian/non-Newtonian shear-thinning fluids is investigated with respect to all wavelength perturbations. The Carreau model has been chosen for the modeling of the rheology of