ﻻ يوجد ملخص باللغة العربية
Let $f: X times Y rightarrow {0,1,bot }$ be a partial function and $mu$ be a distribution with support contained in $f^{-1}(0) cup f^{-1}(1)$. Let $mathsf{D}^{1,mu}_epsilon(f)$ be the classical one-way communication complexity of $f$ with average error under $mu$ at most $epsilon$, $mathsf{Q}^{1,mu}_epsilon(f)$ be the quantum one-way communication complexity of $f$ with average error under $mu$ at most $epsilon$ and $mathsf{Q}^{1,mu, *}_epsilon(f)$ be the entanglement assisted one-way communication complexity of $f$ with average error under $mu$ at most $epsilon$. We show: 1. If $mu$ is a product distribution, then $forall epsilon, eta > 0$, $$mathsf{D}^{1,mu}_{2epsilon + eta}(f) leq mathsf{Q}^{1,mu, *}_{epsilon}(f) /eta+Obigl(log(mathsf{Q}^{1,mu, *}_{epsilon}(f))/etabigr).$$ 2. If $mu$ is a non-product distribution, then $forall epsilon, eta > 0$ such that $epsilon/eta + eta < 0.5$, $$mathsf{D}^{1,mu}_{3eta}(f) = O(mathsf{Q}^{1,mu}_{{epsilon}}(f) cdot mathsf{CS}(f)/eta^4)enspace,$$ where [mathsf{CS}(f) = max_{y} min_{zin{0,1}} { vert {x~|~f(x,y)=z} vert} enspace.]
We prove a direct product theorem for the one-way entanglement-assisted quantum communication complexity of a general relation $fsubseteqmathcal{X}timesmathcal{Y}timesmathcal{Z}$. For any $varepsilon, zeta > 0$ and any $kgeq1$, we show that [ mathrm{
This work addresses two problems in the context of two-party communication complexity of functions. First, it concludes the line of research, which can be viewed as demonstrating qualitative advantage of quantum communication in the three most common
A relational bipartite communication problem is presented that has an efficient quantum simultaneous-messages protocol, but no efficient classical two-way protocol.
We study the relationship between various one-way communication complexity measures of a composed function with the analogous decision tree complexity of the outer function. We consider two gadgets: the AND function on 2 inputs, and the Inner Product
In 1999 Raz demonstrated a partial function that had an efficient quantum two-way communication protocol but no efficient classical two-way protocol and asked, whether there existed a function with an efficient quantum one-way protocol, but still no