ﻻ يوجد ملخص باللغة العربية
Surface waves play important roles in many fundamental and applied areas from seismic detection to material characterizations. Supershear surface waves with propagation speeds greater than bulk shear waves have recently been reported, but their properties are not well understood. In this Letter, we describe theoretical and experimental results on supershear surface waves in rubbery materials. We find that supershear surface waves can be supported in viscoelastic materials with no restriction on the shear quality factor. Interestingly, the effect of prestress on the speed of the supershear surface wave is opposite to that of the Rayleigh surface wave. Furthermore, anisotropy of material affects the supershear wave much more strongly than the Rayleigh surface wave. We offer heuristic interpretation as well as theoretical verification of our experimental observations. Our work points to the potential applications of supershear waves for characterizing the bulk mechanical properties of soft solid from the free surface.
Soft electroactive materials can undergo large deformation subjected to either mechanical or electrical stimulus, and hence they can be excellent candidates for designing extremely flexible and adaptive structures and devices. This paper proposes a s
The motion of soft-glassy materials (SGM) in a confined geometry is strongly impacted by surface roughness. However, the effect of the spatial distribution of the roughness remains poorly understood from a more quantitative viewpoint. Here we present
When a block made of an elastomer is subjected to large shear, its surface remains flat. When a block of biological soft tissue is subjected to large shear, it is likely that its surface in the plane of shear will buckle (apparition of wrinkles). One
In this paper, we study the effects of both the amount of open cell walls and their aperture sizes on solid foams permeability. FEM flow simulations are performed at both pore and macroscopic scales. For foams with fully interconnected pores, we obta
In vivo measurement of the mechanical properties of thin-walled soft tissues (e.g., mitral valve, artery and bladder) and in situ mechanical characterization of thin-walled artificial soft biomaterials in service are of great challenge and difficult