ﻻ يوجد ملخص باللغة العربية
We present an information geometric characterization of quantum driving schemes specified by su(2;C) time-dependent Hamiltonians in terms of both complexity and efficiency concepts. By employing a minimum action principle, the optimum path connecting initial and final states on the manifold in finite-time is the geodesic path between the two states. In particular, the total entropy production that occurs during the transfer is minimized along these optimum paths. For each optimum path that emerges from the given quantum driving scheme, we evaluate the so-called information geometric complexity (IGC) and our newly proposed measure of entropic efficiency constructed in terms of the constant entropy production rates that specify the entropy minimizing paths being compared. From our analytical estimates of complexity and efficiency, we provide a relative ranking among the driving schemes being investigated. Finally, we conclude by commenting on the fact that an higher entropic speed in quantum transfer processes seems to necessarily go along with a lower entropic efficiency together with a higher information geometric complexity.
The minimum entropy production principle provides an approximative variational characterization of close-to-equilibrium stationary states, both for macroscopic systems and for stochastic models. Analyzing the fluctuations of the empirical distributio
We present a simple proof of the minimum time for the quantum evolution between two arbitrary states. This proof is performed in the absence of any geometrical arguments. Then, being in the geometric framework of quantum evolutions based upon the geo
The minimum cut problem in an undirected and weighted graph $G$ is to find the minimum total weight of a set of edges whose removal disconnects $G$. We completely characterize the quantum query and time complexity of the minimum cut problem in the ad
The quench dynamics of many-body quantum systems may exhibit non-analyticities in the Loschmidt echo, a phenomenon known as dynamical phase transition (DPT). Despite considerable research into the underlying mechanisms behind this phenomenon, several
Complex quantum trajectories, which were first obtained from a modified de Broglie-Bohm quantum mechanics, demonstrate that Borns probability axiom in quantum mechanics originates from dynamics itself. We show that a normalisable probability density