ترغب بنشر مسار تعليمي؟ اضغط هنا

The GUAPOS project II. A comprehensive study of peptide-like bond molecules

420   0   0.0 ( 0 )
 نشر من قبل Laura Colzi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Peptide-like bond molecules, which can take part to the formation of proteins in a primitive Earth environment, have been detected up to now only towards a few sources. We present a study of HNCO, HC(O)NH$_{2}$, CH$_{3}$NCO, CH$_{3}$C(O)NH$_{2}$, CH$_{3}$NHCHO, CH$_{3}$CH$_{2}$NCO, NH$_{2}$C(O)NH$_{2}$, NH$_{2}$C(O)CN, and HOCH$_{2}$C(O)NH$_{2}$ towards the hot core G31.41+0.31. We have used the spectrum obtained from the ALMA 3mm spectral survey GUAPOS, with an angular resolution of 1.2$times$1.2 ($sim$4500 au), to derive column densities of all the molecular species, together with other 0.2$times$0.2 ($sim$750 au) ALMA observations to study the morphology of HNCO, HC(O)NH$_{2}$ and CH$_{3}$C(O)NH$_{2}$. We have detected HNCO, HC(O)NH$_{2}$, CH$_{3}$NCO, CH$_{3}$C(O)NH$_{2}$, and CH$_{3}$NHCHO, for the first time all together outside the Galactic center. We have obtained molecular fractional abundances with respect to H$_{2}$ from 10$^{-7}$ down to a few 10$^{-9}$ and with respect to CH$_{3}$OH from 10$^{-3}$ to $sim$4$times$10$^{-2}$. From the comparison with other sources, we find that regions in an earlier stage of evolution, such as pre-stellar cores, show abundances at least two orders of magnitude lower than those in hot cores, hot corinos or shocked regions. Moreover, molecular abundance ratios towards different sources are found to be consistent between them within $sim$1 order of magnitude, regardless of the physical properties (e.g. different masses and luminosities), or the source position throughout the Galaxy. New correlations between pairs of molecular abundances have also been found. These results suggest that all these species are formed on grain surfaces in early evolutionary stages of molecular clouds, and that they are subsequently released back to the gas-phase through thermal desorption or shock-triggered desorption.



قيم البحث

اقرأ أيضاً

200 - Juan Li , Junzhi Wang , Xing Lu 2021
Peptide bonds, as the molecular bridges that connect amino acids, are crucial to the formation of proteins. Searches and studies of molecules with embedded peptide-like bonds are thus important for the understanding of protein formation in space. Her e we report the first tentative detection of propionamide (C2H5CONH2), the largest peptide-like molecule detected in space toward Sagittarius B2(N1) at a position called N1E that is slightly offset from the continuum peak. A new laboratory measurements of the propionamide spectrum were carried out in the 9-461 GHz, which provide good opportunity to check directly for the transition frequencies of detected interstellar lines of propionamide. Our observing result indicates that propionamide emission comes from the warm, compact cores in Sagittarius B2, in which massive protostellars are forming. The column density of propionamide toward Sgr B2(N1E) was derived to be 1.5times 10^{16} cm^-2, which is three fifths of that of acetamide, and one nineteenth of that of formamide. This detection suggests that large peptide-like molecules can form and survive during star-forming process and may form more complex molecules in the interstellar medium. The detection of propionamide bodes well for the presence of polypeptides, as well as other complex prebiotic molecules in the interstellar medium.
Interstellar molecules with a peptide link -NH-C(=O)-, like formamide (NH$_2$CHO), acetamide (NH$_2$COCH$_3$) and isocyanic acid (HNCO) are particularly interesting for their potential role in pre-biotic chemistry. We have studied their emission in t he protostellar shock regions L1157-B1 and L1157-B2, with the IRAM 30m telescope, as part of the ASAI Large Program. Analysis of the line profiles shows that the emission arises from the outflow cavities associated with B1 and B2. Molecular abundance of $approx~(0.4-1.1)times 10^{-8}$ and $(3.3-8.8)times 10^{-8}$ are derived for formamide and isocyanic acid, respectively, from a simple rotational diagram analysis. Conversely, NH$_2$COCH$_3$ was not detected down to a relative abundance of a few $leq 10^{-10}$. B1 and B2 appear to be among the richest Galactic sources of HNCO and NH$_2$CHO molecules. A tight linear correlation between their abundances is observed, suggesting that the two species are chemically related. Comparison with astrochemical models favours molecule formation on ice grain mantles, with NH$_2$CHO generated from hydrogenation of HNCO.
After hydrogen, oxygen, and carbon, nitrogen is one of the most chemically active species in the interstellar medium (ISM). Nitrogen bearing molecules have great importance as they are actively involved in the formation of biomolecules. Therefore, it is essential to look for nitrogen-bearing species in various astrophysical sources, specifically around high-mass star-forming regions where the evolutionary history is comparatively poorly understood. In this paper, we report the observation of three potential pre-biotic molecules, namely, isocyanic acid (HNCO), formamide (NH2CHO), and methyl isocyanate (CH3NCO), which contain peptide-like bonds (-NH-C(=O)-) in a hot molecular core, G10.47+0.03 (hereafter, G10). Along with the identification of these three complex nitrogen-bearing species, we speculate their spatial distribution in the source and discuss their possible formation pathways under such conditions. The rotational diagram method under the LTE condition has been employed to estimate the excitation temperature and the column density of the observed species. Markov Chain Monte Carlo method was used to obtain the best suited physical parameters of G10 as well as line properties of some species. We also determined the hydrogen column density and the optical depth for different continuum observed in various frequency ranges. Finally, based on these observational results, we have constructed a chemical model to explain the observational findings. We found that HNCO, NH2CHO, and CH3NCO are chemically linked with each other.
The chemical inventory of planets is determined by the physical and chemical processes that govern the early phases of star formation. The aim is to investigate N-bearing complex organic molecules towards two Class 0 protostars (B1-c and S68N) at mil limetre wavelengths with ALMA. Next, the results of the detected N-bearing species are compared with those of O-bearing species for the same and other sources. ALMA observations in Band 6 ($sim$ 1 mm) and Band 5 ($sim$ 2 mm) are studied at $sim$ 0.5 resolution, complemented by Band 3 ($sim$ 3 mm) data in a $sim$ 2.5 beam. NH2CHO, C2H5CN, HNCO, HN13CO, DNCO, CH3CN, CH2DCN, and CHD2CN are identified towards the investigated sources. Their abundances relative to CH3OH and HNCO are similar for the two sources, with column densities that are typically an order of magnitude lower than those of O-bearing species. The largest variations, of an order of magnitude, are seen for NH2CHO abundance ratios with respect to HNCO and CH3OH and do not correlate with the protostellar luminosity. In addition, within uncertainties, the N-bearing species have similar excitation temperatures to those of O-bearing species ($sim$ 100 $sim$ 300 K). The similarity of most abundances with respect to HNCO, including those of CH2DCN and CHD2CN, hints at a shared chemical history, especially the high D/H ratio in cold regions prior to star formation. However, some of the variations in abundances may reflect the sensitivity of the chemistry to local conditions such as temperature (e.g. NH2CHO), while others may arise from differences in the emitting areas of the molecules linked to their different binding energies in the ice. The two sources discussed here add to the small number of sources with such a detailed chemical analysis on Solar System scales. Future JWST data will allow a direct comparison between the ice and gas abundances of N-bearing species.
Molecules with an amide functional group resemble peptide bonds, the molecular bridges that connect amino acids, and may thus be relevant in processes that lead to the formation of life. In this study, the solid state formation of some of the smalles t amides is investigated in the laboratory. To this end, CH$_{4}$:HNCO ice mixtures at 20 K are irradiated with far-UV photons, where the radiation is used as a tool to produce the radicals required for the formation of the amides. Products are identified and investigated with infrared spectroscopy and temperature programmed desorption mass spectrometry. The laboratory data show that NH$_{2}$CHO, CH$_{3}$NCO, NH$_{2}$C(O)NH$_{2}$, CH$_{3}$C(O)NH$_{2}$ and CH$_{3}$NH$_{2}$ can simultaneously be formed. The NH$_{2}$CO radical is found to be key in the formation of larger amides. In parallel, ALMA observations towards the low-mass protostar IRAS 16293-2422B are analysed in search of CH$_{3}$NHCHO (N-methylformamide) and CH$_{3}$C(O)NH$_{2}$ (acetamide). CH$_{3}$C(O)NH$_{2}$ is tentatively detected towards IRAS 16293-2422B at an abundance comparable with those found towards high-mass sources. The combined laboratory and observational data indicates that NH$_{2}$CHO and CH$_{3}$C(O)NH$_{2}$ are chemically linked and form in the ice mantles of interstellar dust grains. A solid-state reaction network for the formation of these amides is proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا