ﻻ يوجد ملخص باللغة العربية
Peptide-like bond molecules, which can take part to the formation of proteins in a primitive Earth environment, have been detected up to now only towards a few sources. We present a study of HNCO, HC(O)NH$_{2}$, CH$_{3}$NCO, CH$_{3}$C(O)NH$_{2}$, CH$_{3}$NHCHO, CH$_{3}$CH$_{2}$NCO, NH$_{2}$C(O)NH$_{2}$, NH$_{2}$C(O)CN, and HOCH$_{2}$C(O)NH$_{2}$ towards the hot core G31.41+0.31. We have used the spectrum obtained from the ALMA 3mm spectral survey GUAPOS, with an angular resolution of 1.2$times$1.2 ($sim$4500 au), to derive column densities of all the molecular species, together with other 0.2$times$0.2 ($sim$750 au) ALMA observations to study the morphology of HNCO, HC(O)NH$_{2}$ and CH$_{3}$C(O)NH$_{2}$. We have detected HNCO, HC(O)NH$_{2}$, CH$_{3}$NCO, CH$_{3}$C(O)NH$_{2}$, and CH$_{3}$NHCHO, for the first time all together outside the Galactic center. We have obtained molecular fractional abundances with respect to H$_{2}$ from 10$^{-7}$ down to a few 10$^{-9}$ and with respect to CH$_{3}$OH from 10$^{-3}$ to $sim$4$times$10$^{-2}$. From the comparison with other sources, we find that regions in an earlier stage of evolution, such as pre-stellar cores, show abundances at least two orders of magnitude lower than those in hot cores, hot corinos or shocked regions. Moreover, molecular abundance ratios towards different sources are found to be consistent between them within $sim$1 order of magnitude, regardless of the physical properties (e.g. different masses and luminosities), or the source position throughout the Galaxy. New correlations between pairs of molecular abundances have also been found. These results suggest that all these species are formed on grain surfaces in early evolutionary stages of molecular clouds, and that they are subsequently released back to the gas-phase through thermal desorption or shock-triggered desorption.
Peptide bonds, as the molecular bridges that connect amino acids, are crucial to the formation of proteins. Searches and studies of molecules with embedded peptide-like bonds are thus important for the understanding of protein formation in space. Her
Interstellar molecules with a peptide link -NH-C(=O)-, like formamide (NH$_2$CHO), acetamide (NH$_2$COCH$_3$) and isocyanic acid (HNCO) are particularly interesting for their potential role in pre-biotic chemistry. We have studied their emission in t
After hydrogen, oxygen, and carbon, nitrogen is one of the most chemically active species in the interstellar medium (ISM). Nitrogen bearing molecules have great importance as they are actively involved in the formation of biomolecules. Therefore, it
The chemical inventory of planets is determined by the physical and chemical processes that govern the early phases of star formation. The aim is to investigate N-bearing complex organic molecules towards two Class 0 protostars (B1-c and S68N) at mil
Molecules with an amide functional group resemble peptide bonds, the molecular bridges that connect amino acids, and may thus be relevant in processes that lead to the formation of life. In this study, the solid state formation of some of the smalles