ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing multipartite entanglement, coherence and quantum information preservation under classical Ornstein-Uhlenbeck noise

222   0   0.0 ( 0 )
 نشر من قبل Atta Ur Rahman Khan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We address entanglement, coherence, and information protection in a system of four non-interacting qubits coupled with different classical environments, namely: common, bipartite, tripartite, and independent environments described by Ornstein-Uhlenbeck (ORU) noise. We show that quantum information preserved by the four qubit state is more dependent on the coherence than the entanglement using time-dependent entanglement witness, purity, and Shannon entropy. We find these two quantum phenomena directly interrelated and highly vulnerable in environments with ORU noise, resulting in the pure exponential decay of a considerable amount. The current Markovian dynamical map, as well as suppression of the fluctuating character of the environments are observed to be entirely attributable to the Gaussian nature of the noise. Furthermore, the increasing number of environments are witnessed to accelerate the amount of decay. Unlike other noises, the current noise parameters flexible range is readily exploitable, ensuring long enough preserved memory properties. The four-qubit GHZ state, besides having a large information storage potential, stands partially entangled and coherent in common environments for an indefinite duration. Thus, it appeared to be a more promising resource for functional quantum computing than bipartite and tripartite quantum systems. In addition, we derive computational values for each system-environment interaction, which will help quantum practitioners to optimize the related kind of classical environments.

قيم البحث

اقرأ أيضاً

We study the relations between quantum coherence and quantum nonlocality, genuine quantum entanglement and genuine quantum nonlocality. We show that the coherence of a qubit state can be converted to the nonlocality of two-qubit states via incoherent operations. The results are also generalized to qudit case. Furthermore, rigorous relations between the quantum coherence of a single-partite state and the genuine multipartite quantum entanglement, as well as the genuine three-qubit quantum nonlocality are established.
Quantum discord is a measure of non-classical correlations, which are excess correlations inherent in quantum states that cannot be accessed by classical measurements. For multipartite states, the classically accessible correlations can be defined by the mutual information of the multipartite measurement outcomes. In general the quantum discord of an arbitrary quantum state involves an optimisation of over the classical measurements which is hard to compute. In this paper, we examine the quantum discord in the experimentally relevant case when the quantum states are Gaussian and the measurements are restricted to Gaussian measurements. We perform the optimisation over the measurements to find the Gaussian discord of the bipartite EPR state and tripartite GHZ state in the presence of different types of noise: uncorrelated noise, multiplicative noise and correlated noise. We find that by adding uncorrelated noise and multiplicative noise, the quantum discord always decreases. However, correlated noise can either increase or decrease the quantum discord. We also find that for low noise, the optimal classical measurements are single quadrature measurements. As the noise increases, a dual quadrature measurement becomes optimal.
We consider the problem of transmitting classical and quantum information reliably over an entanglement-assisted quantum channel. Our main result is a capacity theorem that gives a three-dimensional achievable rate region. Points in the region are ra te triples, consisting of the classical communication rate, the quantum communication rate, and the entanglement consumption rate of a particular coding scheme. The crucial protocol in achieving the boundary points of the capacity region is a protocol that we name the classically-enhanced father protocol. The classically-enhanced father protocol is more general than other protocols in the family tree of quantum Shannon theoretic protocols, in the sense that several previously known quantum protocols are now child protocols of it. The classically-enhanced father protocol also shows an improvement over a time-sharing strategy for the case of a qubit dephasing channel--this result justifies the need for simultaneous coding of classical and quantum information over an entanglement-assisted quantum channel. Our capacity theorem is of a multi-letter nature (requiring a limit over many uses of the channel), but it reduces to a single-letter characterization for at least three channels: the completely depolarizing channel, the quantum erasure channel, and the qubit dephasing channel.
Quantum information processing exploits non-local functionality that has led to significant breakthroughs in the successful deployment of quantum mechanical protocols. In this regard, we address the dynamics of entanglement and coherence for three no n-interacting qubits initially prepared as maximally entangled GHZ-like state coupled with independent classical environments. Two different Gaussian noises in pure and mixed noisy situations, namely, pure power-law noise, pure fractional Gaussian noise, power-law noise maximized and fractional Gaussian noise maximized cases are assumed to characterize the environments. With the help of time-dependent entanglement witnesses, purity, and decoherence measures, within the full range of parameters, we show that the current mixed noise cases are more detrimental than pure ones where entanglement and coherence are found short-lived. The power-law noise phase, in particular, appears to be more flexible and exploitable for long-term preservation effects. In contrast, we find that in both pure and mixed noise cases, where entanglement and coherence degrade at a relatively high rate, there is no ultimate solution for avoiding the detrimental dephasing effects of fractional Gaussian noise. The three-qubit state becomes disentangled and decoherent within independent classical environments driven by both pure and mixed Gaussian noises, either in long or short interaction time. In addition, due to the lack of the entanglement revival phenomenon, there is no information exchange between the system and the environment. The three-qubit GHZ-like states have thus been realized to be an excellent resource for long enough quantum correlations, coherence, and quantum information preservation in classical independent channels driven by pure power-law noise with extremely low parameter values.
Quantification of coherence lies at the heart of quantum information processing and fundamental physics. Exact evaluation of coherence measures generally needs a full reconstruction of the density matrix, which becomes intractable for large-scale mul tipartite systems. Here, we propose a systematic theoretical approach to efficiently estimating lower and upper bounds of coherence in multipartite states. Under the stabilizer formalism, the lower bound is determined by the spectrum estimation method with a small number of measurements and the upper bound is determined by a single measurement. We verify our theory with a four-qubit optical quantum system.We experimentally implement various multi-qubit entangled states, including the Greenberger-Horne-Zeilinger state, the cluster state, and the W state, and show how their coherence are efficiently inferred from measuring few observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا