ﻻ يوجد ملخص باللغة العربية
Neural chat translation aims to translate bilingual conversational text, which has a broad application in international exchanges and cooperation. Despite the impressive performance of sentence-level and context-aware Neural Machine Translation (NMT), there still remain challenges to translate bilingual conversational text due to its inherent characteristics such as role preference, dialogue coherence, and translation consistency. In this paper, we aim to promote the translation quality of conversational text by modeling the above properties. Specifically, we design three latent variational modules to learn the distributions of bilingual conversational characteristics. Through sampling from these learned distributions, the latent variables, tailored for role preference, dialogue coherence, and translation consistency, are incorporated into the NMT model for better translation. We evaluate our approach on the benchmark dataset BConTrasT (English-German) and a self-collected bilingual dialogue corpus, named BMELD (English-Chinese). Extensive experiments show that our approach notably boosts the performance over strong baselines by a large margin and significantly surpasses some state-of-the-art context-aware NMT models in terms of BLEU and TER. Additionally, we make the BMELD dataset publicly available for the research community.
Neural Chat Translation (NCT) aims to translate conversational text between speakers of different languages. Despite the promising performance of sentence-level and context-aware neural machine translation models, there still remain limitations in cu
Word embedding is central to neural machine translation (NMT), which has attracted intensive research interest in recent years. In NMT, the source embedding plays the role of the entrance while the target embedding acts as the terminal. These layers
Recent studies have demonstrated a perceivable improvement on the performance of neural machine translation by applying cross-lingual language model pretraining (Lample and Conneau, 2019), especially the Translation Language Modeling (TLM). To allevi
Recently, token-level adaptive training has achieved promising improvement in machine translation, where the cross-entropy loss function is adjusted by assigning different training weights to different tokens, in order to alleviate the token imbalanc
We explore ways of incorporating bilingual dictionaries to enable semi-supervised neural machine translation. Conventional back-translation methods have shown success in leveraging target side monolingual data. However, since the quality of back-tran