ﻻ يوجد ملخص باللغة العربية
By utilizing label distribution learning, a probability distribution is assigned for a facial image to express a compound emotion, which effectively improves the problem of label uncertainties and noises occurred in one-hot labels. In practice, it is observed that correlations among emotions are inherently different, such as surprised and happy emotions are more possibly synchronized than surprised and neutral. It indicates the correlation may be crucial for obtaining a reliable label distribution. Based on this, we propose a new method that amends the label distribution of each facial image by leveraging correlations among expressions in the semantic space. Inspired by inherently diverse correlations among word2vecs, the topological information among facial expressions is firstly explored in the semantic space, and each image is embedded into the semantic space. Specially, a class-relation graph is constructed to transfer the semantic correlation among expressions into the task space. By comparing semantic and task class-relation graphs of each image, the confidence of its label distribution is evaluated. Based on the confidence, the label distribution is amended by enhancing samples with higher confidence and weakening samples with lower confidence. Experimental results demonstrate the proposed method is more effective than compared state-of-the-art methods.
Facial expression recognition is a challenging task, arguably because of large intra-class variations and high inter-class similarities. The core drawback of the existing approaches is the lack of ability to discriminate the changes in appearance cau
In this paper, covariance matrices are exploited to encode the deep convolutional neural networks (DCNN) features for facial expression recognition. The space geometry of the covariance matrices is that of Symmetric Positive Definite (SPD) matrices.
Recognizing human emotion/expressions automatically is quite an expected ability for intelligent robotics, as it can promote better communication and cooperation with humans. Current deep-learning-based algorithms may achieve impressive performance i
High-level manipulation of facial expressions in images --- such as changing a smile to a neutral expression --- is challenging because facial expression changes are highly non-linear, and vary depending on the appearance of the face. We present a fu
We present an approach that combines automatic features learned by convolutional neural networks (CNN) and handcrafted features computed by the bag-of-visual-words (BOVW) model in order to achieve state-of-the-art results in facial expression recogni