ترغب بنشر مسار تعليمي؟ اضغط هنا

SKAO HI Intensity Mapping: Blind Foreground Subtraction Challenge

74   0   0.0 ( 0 )
 نشر من قبل Marta Spinelli
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutral Hydrogen Intensity Mapping (HI IM) surveys will be a powerful new probe of cosmology. However, strong astrophysical foregrounds contaminate the signal and their coupling with instrumental systematics further increases the data cleaning complexity. In this work, we simulate a realistic single-dish HI IM survey of a $5000$~deg$^2$ patch in the $950 - 1400$ MHz range, with both the MID telescope of the SKA Observatory (SKAO) and MeerKAT, its precursor. We include a state-of-the-art HI simulations and explore different foreground models and instrumental effects such as non-homogeneous thermal noise and beam side-lobes. We perform the first Blind Foreground Subtraction Challenge for HI IM on these synthetic data-cubes, aiming to characterise the performance of available foreground cleaning methods with no prior knowledge of the sky components and noise level. Nine foreground cleaning pipelines joined the Challenge, based on statistical source separation algorithms, blind polynomial fitting, and an astrophysical-informed parametric fit to foregrounds. We devise metrics to compare the pipeline performances quantitatively. In general, they can recover the input maps 2-point statistics within 20 per cent in the range of scales least affected by the telescope beam. However, spurious artefacts appear in the cleaned maps due to interactions between the foreground structure and the beam side-lobes. We conclude that it is fundamental to develop accurate beam deconvolution algorithms and test data post-processing steps carefully before cleaning. This study was performed as part of SKAO preparatory work by the HI IM Focus Group of the SKA Cosmology Science Working Group.



قيم البحث

اقرأ أيضاً

21cm intensity mapping experiments aim to observe the diffuse neutral hydrogen (HI) distribution on large scales which traces the Cosmic structure. The Square Kilometre Array (SKA) will have the capacity to measure the 21cm signal over a large fracti on of the sky. However, the redshifted 21cm signal in the respective frequencies is faint compared to the Galactic foregrounds produced by synchrotron and free-free electron emission. In this article, we review selected foreground subtraction methods suggested to effectively separate the 21cm signal from the foregrounds with intensity mapping simulations or data. We simulate an intensity mapping experiment feasible with SKA phase 1 including extragalactic and Galactic foregrounds. We give an example of the residuals of the foreground subtraction with a independent component analysis and show that the angular power spectrum is recovered within the statistical errors on most scales. Additionally, the scale of the Baryon Acoustic Oscillations is shown to be unaffected by foreground subtraction.
134 - L. Wolz , F.B. Abdalla , C. Blake 2013
We model a 21 cm intensity mapping survey in the redshift range 0.01<z<1.5 designed to simulate the skies as seen by future radio telescopes such as the Square Kilometre Array (SKA), including instrumental noise and Galactic foregrounds. In our pipel ine, we remove the introduced Galactic foregrounds with a fast independent component analysis (fastica) technique. We present the power spectrum of the large-scale matter distribution, C(l), before and after the application of this foreground removal method and calculate the resulting systematic errors. We attempt to reduce systematics in the foreground subtraction by optimally masking the maps to remove high foregrounds in the Galactic plane. Our simulations show a certain level of bias remains in the power spectrum at all scales l<400. At large-scales l<30 this bias is particularly significant. We measure the impact of these systematic effects in two different ways: firstly we fit cosmological parameters to the broadband shape of the power spectrum and secondly we extract the position of the Baryon Acoustic Oscillations (BAO). In the first analysis, we find that the systematics introduce an significant shift in the best fit cosmological parameters at the 2 to 3 sigma level which depends on the masking and noise levels. However, cosmic distances can be recovered in an unbiased way after foreground removal at all simulated redshifts by fitting the BAOs in the power spectrum. We conclude that further advances in foreground removal are needed in order to recover unbiased information from the broadband shape of the power spectrum, however, intensity mapping experiments will be a powerful tool for mapping cosmic distances across a wide redshift range.
We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST $19$-beam L -band receivers ($1.05$--$1.45$ GHz) can provide constraints on the matter power spectrum and dark energy equation of state parameters ($w_{0},w_{a}$) that are comparable to the BINGO and CHIME experiments. For one year of integration time we find that the optimal survey area is $6000,{rm deg}^2$. However, observing with larger frequency coverage at higher redshift ($0.95$--$1.35$ GHz) improves the projected errorbars on the HI power spectrum by more than $2~sigma$ confidence level. The combined constraints from FAST, CHIME, BINGO and Planck CMB observations can provide reliable, stringent constraints on the dark energy equation of state.
384 - Alkistis Pourtsidou 2017
We explore the possibility of performing an HI intensity mapping survey with the South African MeerKAT radio telescope, which is a precursor to the Square Kilometre Array (SKA). We propose to use cross-correlations between the MeerKAT intensity mappi ng survey and optical galaxy surveys, in order to mitigate systematic effects and produce robust cosmological measurements. Our forecasts show that precise measurements of the HI signal can be made in the near future. These can be used to constrain HI and cosmological parameters across a wide range of redshift.
We discuss the detection of large scale HI intensity fluctuations using a single dish approach with the ultimate objective of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. We present 3D power spectra, 2D angular power spectra for individual redshift slices, and also individual line-of-sight spectra, computed using the S^3 simulated HI catalogue which is based on the Millennium Simulation. We consider optimal instrument design and survey strategies for a single dish observation at low and high redshift for a fixed sensitivity. For a survey corresponding to an instrument with T_sys=50 K, 50 feed horns and 1 year of observations, we find that at low redshift (z approx 0.3), a resolution of 40 arc min and a survey of 5000 deg^2 is close to optimal, whereas at higher redshift (z approx 0.9) a resolution of 10 arcmin and 500 deg^2 would be necessary. Continuum foreground emission from the Galaxy and extragalactic radio sources are potentially a problem. We suggest that it could be that the dominant extragalactic foreground comes from the clustering of very weak sources. We assess its amplitude and discuss ways by which it might be mitigated. We then introduce our concept for a single dish telescope designed to detect BAO at low redshifts. It involves an under-illumintated static 40 m dish and a 60 element receiver array held 90 m above the under-illuminated dish. Correlation receivers will be used with each main science beam referenced against an antenna pointing at one of the Celestial Poles for stability and control of systematics. We make sensitivity estimates for our proposed system and projections for the uncertainties on the power spectrum after 1 year of observations. We find that it is possible to measure the acoustic scale at zapprox 0.3 with an accuracy 2.4% and that w can be measured to an accuracy of 16%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا