ترغب بنشر مسار تعليمي؟ اضغط هنا

Differentially Private Algorithms for 2020 Census Detailed DHC Race & Ethnicity

65   0   0.0 ( 0 )
 نشر من قبل Ashwin Machanavajjhala
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This article describes a proposed differentially private (DP) algorithms that the US Census Bureau is considering to release the Detailed Demographic and Housing Characteristics (DHC) Race & Ethnicity tabulations as part of the 2020 Census. The tabulations contain statistics (counts) of demographic and housing characteristics of the entire population of the US crossed with detailed races and tribes at varying levels of geography. We describe two differentially private algorithmic strategies, one based on adding noise drawn from a two-sided Geometric distribution that satisfies pure-DP, and another based on adding noise from a Discrete Gaussian distribution that satisfied a well studied variant of differential privacy, called Zero Concentrated Differential Privacy (zCDP). We analytically estimate the privacy loss parameters ensured by the two algorithms for comparable levels of error introduced in the statistics.

قيم البحث

اقرأ أيضاً

Data exploration systems that provide differential privacy must manage a privacy budget that measures the amount of privacy lost across multiple queries. One effective strategy to manage the privacy budget is to compute a one-time private synopsis of the data, to which users can make an unlimited number of queries. However, existing systems using synopses are built for offline use cases, where a set of queries is known ahead of time and the system carefully optimizes a synopsis for it. The synopses that these systems build are costly to compute and may also be costly to store. We introduce Overlook, a system that enables private data exploration at interactive latencies for both data analysts and data curators. The key idea in Overlook is a virtual synopsis that can be evaluated incrementally, without extra space storage or expensive precomputation. Overlook simply executes queries using an existing engine, such as a SQL DBMS, and adds noise to their results. Because Overlooks synopses do not require costly precomputation or storage, data curators can also use Overlook to explore the impact of privacy parameters interactively. Overlook offers a rich visual query interface based on the open source Hillview system. Overlook achieves accuracy comparable to existing synopsis-based systems, while offering better performance and removing the need for extra storage.
Differentially private analysis of graphs is widely used for releasing statistics from sensitive graphs while still preserving user privacy. Most existing algorithms however are in a centralized privacy model, where a trusted data curator holds the e ntire graph. As this model raises a number of privacy and security issues -- such as, the trustworthiness of the curator and the possibility of data breaches, it is desirable to consider algorithms in a more decentralized local model where no server holds the entire graph. In this work, we consider a local model, and present algorithms for counting subgraphs -- a fundamental task for analyzing the connection patterns in a graph -- with LDP (Local Differential Privacy). For triangle counts, we present algorithms that use one and two rounds of interaction, and show that an additional round can significantly improve the utility. For $k$-star counts, we present an algorithm that achieves an order optimal estimation error in the non-interactive local model. We provide new lower-bounds on the estimation error for general graph statistics including triangle counts and $k$-star counts. Finally, we perform extensive experiments on two real datasets, and show that it is indeed possible to accurately estimate subgraph counts in the local differential privacy model.
We study the basic operation of set union in the global model of differential privacy. In this problem, we are given a universe $U$ of items, possibly of infinite size, and a database $D$ of users. Each user $i$ contributes a subset $W_i subseteq U$ of items. We want an ($epsilon$,$delta$)-differentially private algorithm which outputs a subset $S subset cup_i W_i$ such that the size of $S$ is as large as possible. The problem arises in countless real world applications; it is particularly ubiquitous in natural language processing (NLP) applications as vocabulary extraction. For example, discovering words, sentences, $n$-grams etc., from private text data belonging to users is an instance of the set union problem. Known algorithms for this problem proceed by collecting a subset of items from each user, taking the union of such subsets, and disclosing the items whose noisy counts fall above a certain threshold. Crucially, in the above process, the contribution of each individual user is always independent of the items held by other users, resulting in a wasteful aggregation process, where some item counts happen to be way above the threshold. We deviate from the above paradigm by allowing users to contribute their items in a $textit{dependent fashion}$, guided by a $textit{policy}$. In this new setting ensuring privacy is significantly delicate. We prove that any policy which has certain $textit{contractive}$ properties would result in a differentially private algorithm. We design two new algorithms, one using Laplace noise and other Gaussian noise, as specific instances of policies satisfying the contractive properties. Our experiments show that the new algorithms significantly outperform previously known mechanisms for the problem.
In this paper, we study efficient differentially private alternating direction methods of multipliers (ADMM) via gradient perturbation for many machine learning problems. For smooth convex loss functions with (non)-smooth regularization, we propose t he first differentially private ADMM (DP-ADMM) algorithm with performance guarantee of $(epsilon,delta)$-differential privacy ($(epsilon,delta)$-DP). From the viewpoint of theoretical analysis, we use the Gaussian mechanism and the conversion relationship between Renyi Differential Privacy (RDP) and DP to perform a comprehensive privacy analysis for our algorithm. Then we establish a new criterion to prove the convergence of the proposed algorithms including DP-ADMM. We also give the utility analysis of our DP-ADMM. Moreover, we propose an accelerated DP-ADMM (DP-AccADMM) with the Nesterovs acceleration technique. Finally, we conduct numerical experiments on many real-world datasets to show the privacy-utility tradeoff of the two proposed algorithms, and all the comparative analysis shows that DP-AccADMM converges faster and has a better utility than DP-ADMM, when the privacy budget $epsilon$ is larger than a threshold.
336 - Lei Yu , Ling Liu , Calton Pu 2019
Deep learning techniques based on neural networks have shown significant success in a wide range of AI tasks. Large-scale training datasets are one of the critical factors for their success. However, when the training datasets are crowdsourced from i ndividuals and contain sensitive information, the model parameters may encode private information and bear the risks of privacy leakage. The recent growing trend of the sharing and publishing of pre-trained models further aggravates such privacy risks. To tackle this problem, we propose a differentially private approach for training neural networks. Our approach includes several new techniques for optimizing both privacy loss and model accuracy. We employ a generalization of differential privacy called concentrated differential privacy(CDP), with both a formal and refined privacy loss analysis on two different data batching methods. We implement a dynamic privacy budget allocator over the course of training to improve model accuracy. Extensive experiments demonstrate that our approach effectively improves privacy loss accounting, training efficiency and model quality under a given privacy budget.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا